
Modified Free Energy Model to improve RNA secondary structure
prediction with pseudoknots

Kwok-Kit Tong, Kwan-Yau Cheung, Kin-Hong Lee, Kwong-Sak Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin N.T. Hong Kong

Email: {kktong, kycheung, khlee, ksleung}@cse.cuhk.edu.hk

Abstract— The free energy (evaluation) models used in RNA
secondary structure prediction are one of the most important
reasons that makes the prediction a challenging computational
problem in Bioinformatics. These models are the key factor de-
termining the accuracy of the prediction algorithms. Previously
we have developed a method called GAknot that has obtained
good performance on predicting RNA secondary structures with
pseudoknots. In this paper, we propose a new free energy model.
We first select a number of RNA sequences from a database
which contains known RNA secondary structures as a training
dataset for learning this new model. From the training dataset,
we then extract base pairs patterns in subsequences of pairs of
k-mers from the stems of each sequence in the training data and
use the patterns to formulate penalty factors. We modify the
energy model by adding these penalty factors. Combined with
the new modified energy model, the prediction performance
of GAknot has been improved significantly. GAknot with the
new modified energy model is shown to be the best method
in comparison with two state-of-the-art algorithms using a
commonly used testing dataset. The penalty factors of the
new energy model and dataset can be downloaded at http:
//appsrv.cse.cuhk.edu.hk/˜kktong/NewModel

Index Terms— rna secondary structure prediction; energy
model; pseudoknot

I. INTRODUCTION

RNA secondary structure prediction including pseudo-
knots is an important problem in Bioinformatics. It is because
predicting RNA secondary structure can provide estimation
on the 3D structure and the functions of RNA [1], [2].
In addition, psueodknots are found in many RNAs, like
ribosomal RNAs, telomerase RNAs and viral RNAs [3], [4],
like HIV-1 [5], and they are involved in many biological
functions such as splicing, ribosomal frameshifting, rival
genome replication and regulation of translation [6]–[9].
Figure 1 shows the simplest type of pseudoknots, which is
called H-type pseudoknots.

There are many computational methods for predicting
RNA secondary structure and they can be roughly classified
to two streams, which are comparative sequences approaches
and single sequence approaches. Comparative sequences ap-
proaches exploit the conservation of evolutionary information
in multiple homologous sequences alignment. Basically this
type of approaches can get more accurate results compare
to single sequence approaches, but required sequence align-
ments are not sufficient so that this type of approaches
may not be always feasible. Single sequence approaches use

Fig. 1. A simple H-type pseudoknot. H-type pseudoknot is composed by
2 stems and 3 loops. Usually, loop 2 has zero or one base.

an energy model as a scoring function to find a structure
that have a minimum free energy (MFE). Since predicting
pseudoknots by finding MFE has been proven a NP-complete
problem [10], there are two types of methods that can solve
this problem in a reasonable time. The first type is to predict
restricted classes of pseudoknots by dynamic programming.
The second type uses heuristic algorithms, which can predict
more classes of pseudoknots and usually more efficient than
dynamic programming approaches, but not guaranteed to find
the MFE structure.

The energy model used in secondary structure prediction
is composed by a list of structural features (like hairpin
loops, bulge loops and stacked pairs, etc.), free energy change
parameters and a function that assigns total energy change to
a secondary structure [11]. The Turner energy model [12] is
the most widely used model for pseudoknot-free secondary
structure prediction. For pseudoknots prediction, the Dirks-
Pierce (DP) model is widely used and it can achieve better
performance in predicting pseudoknots compared to the
Turner energy model [13].

Since the accuracy of prediction methods highly depends
on the energy model, the performance of prediction will be
improved if the energy model can model the reality more
accurately. In this paper, we propose a modified version of
an existing energy model called DP09, which is an improved
version of DP model proposed by Andronescu et al. [11], to
increase the accuracy of RNA secondary structure prediction
with pseudoknots by a set of penalty factors learnt from a
dataset of validated RNA secondary structures as the training
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data.
The paper layout is as follows: The data collection,

analysis and modified energy model will be described in
Section II. The results are shown in Section III. Discussion
and conclusion are given in Section IV.

II. MATERIALS AND METHODS

We propose a modified energy model with new parameter
from a training dataset. In Section II A, we discuss the
process of data collection and analysis. Then we talk about
the formulation of the new energy model in Section II B.

A. Training Data and statistics analysis

To train new parameters for the energy model, we first
get the validated RNA secondary structures from a database
called RNA STRAND [14]. We select 1057 RNA structures
with pseudoknots as the training dataset. These set of RNAs
includes different lengths, from 20nt to 4400nt, and different
types of pseudoknots, like simple H-type and kissing hair-
pins.

From the training dataset, we want to learn which parts of
the RNA sequences are likely to form base pairs. Therefore,
we extract the stems of each sequence from the training data
and scan the stems to obtain lists of 3-mers, 4-mers and
5-mers respectively. A k-mer means a subsequence with k
base-pairs. Figure 2 shows an example of the lists of 3-mers,
4-mers and 5-mers. The reason why we use 3-mers, 4-mers
and 5-mers is that from the statistics of RNA STRAND,
the average stem length of RNA secondary structures is
concentrated between 3nt and 5nt . After that, we count the
respective numbers of each 3-mer, 4-mer and 5-mer patterns,
and normalize the occurrences of them by the total number of
occurrences of the corresponding k-mer respectively. Please
note that the normalization of patterns of 3-mers, 4-mers
and 5-mers are independent. Figure 3 shows an example of
the normalization. Now for each 3-mers, 4-mers and 5-mers,
there is a normalized occurrence value attached to it, and
we treat each value as a penalty factor for the respective 3-
mers, 4-mers and 5-mers. Given a k-mer, we can obtain the
corresponding penalty factor by the following function:

Penk(merki ) =
#merki
#merk

(1)

for k = {3, 4, 5}, where merki is a particular k-mer,
#merki is the number of occurrence of this particular k-mer,
and #merk is the total number of occurrences of respective
k-mer. For example, #mer3 is 25 in Figure 3.

B. The New energy model

After we have extracted the stem patterns, namely 3-mers,
4-mers and 5-mers, in Section II A, we have found 6666
patterns in total, 216 for 3-mers, 1261 for 4-mers, and 5189
for 5-mers. To make a new energy model, we use DP09
(Dirks-Pierce with new parameters) proposed by Andronescu
et al. [11] as the base energy model and combine it with
our penalty factors defined in Section II A. To calculate
the new energy, we first find out the stems of a predicted

Fig. 2. An example of how to extract the 3-mers, 4-mers and 5-mers from
training data. In this example, we have two stems in the secondary structure,
which are 3nt and 6nt in length respectively. Then there is one 3-mer, but no
4-mer and 5-mer can be extracted from the 3nt long stem. Similarly, there
are four 3-mers, three 4-mers and two 5-mers can be extracted from the 6nt
long stem. Suppose we want to extract the stem patterns of the secondary
structure in figure (A). The input is an equivalent representation shown in
the left of figure (B). Then by this representation, we get the lists of 3-mers,
4-mers and 5-mers.

Fig. 3. An example of normalization. We normalize 3-mer, 4-mer and
5-mer independently, based on its total occurrences. Please note that the
occurrence count for each pattern is summed by all training data in practice.



secondary structure and then for each stem, we use three
sliding windows of sizes 3, 4 and 5, to extract the 3-mers,
4-mers and 5-mers. Then we look up the penalty factors
obtained from the training dataset described in Section II
A and figure 3 to calculate the sum of penalty factors,
and subtract it from the energy of the predicted secondary
structure given by DP09. We sum the penalty factors if the
extracted 3-mers, 4-mers and 5-mers exist in the training
dataset. Otherwise, the value of penalty factor is set to zero.
Therefore, the new energy model is given by the following
formula:

E = EDP09 −
5∑

k=3

∑
i

(Penk(merki )) (2)

where EDP09 is the energy given by DP09, Pen3() returns
the corresponding penalty factor of 3-mers, Pen4() returns
the penalty factor of 4-mers, Pen5() returns the penalty
factor of 5-mers, mer3i , mer4i and mer5i are the respective
numbers of the 3-mers, 4-mers and 5-mers which appear
in the predicted secondary structure respectively. Figure 4
shows an example of the calculation of the new energy
model. The reason why we formulate the new energy model
as (2) is based on the intuitive belief that the longer the
stem, the more stable the structure will be. Therefore, in our
model, if a predicted stem is longer, it will have a higher
penalty factor to lower the energy, which implies a more
stable predicted structure.

Fig. 4. An example of calculating energy of a predicted RNA secondary
structure using the new energy model. Suppose we have the predicted
secondary structure in figure (A). Then we extract the 3-mers, 4-mers and
5-mers of this predicted structure and find out the corresponding penalty
factor, which have been get in the normalization step, as shown in figure
(B). Please note that if the pattern cannot be found, which means the pattern
does not appear in the training data, we will give the penalty factor as zero.
Finally, we can calculate the energy of the predicted structure by (2), as
shown in figure (C).

III. RESULTS

To evaluate our new energy model, we select a well-known
dataset as the testing dataset and it will be described in
Section III A. In Section III B, we choose an RNA secondary
structures prediction algorithm, called GAknot [15], to show
the differences of performance between our new energy
model and DP09, and compare them with two state-of-the-
art algorithms using different energy models. The two state-
of-the-art algorithms are HotKnots [11] and IPknot [16]
respectively.

The training dataset, testing dataset and the penalty factors
can be found at http://appsrv.cse.cuhk.edu.hk/
˜kktong/NewModel

A. Testing Data

To validate our new energy model, we use a dataset of well
known, widely used and validated RNA secondary structures
with pseudoknots. This dataset contains 41 sequences, which
is a subset of sequences used in HotKnots [17]. We exclude
2 sequences because they do not have full sequence infor-
mation. We call this dataset as HK41. The sequences in this
dataset have length 27nt to 230nt.

B. Evaluation of the new energy model

We choose our previously published RNA secondary struc-
tures prediction algorithm, GAknot, as the base testing algo-
rithm [15]. The reason is that it has been proven the searching
power of GAknot is better than other existing algorithms
for pseudoknots prediction. Another reason is GAknot can
output more than one predicted structure. Originally, GAknot
use DP09 as the scoring function. We call GAknot using
the new energy model as GAknot 2.0 and we can easily
evaluate the accuracy of the proposed new energy model
by comparing to the original GAknot, which also means
we can easily compare our new energy model and DP09
through GAknot. We also compare the results of GAknot 2.0
with two state-of-the-art algorithms, which are HotKnots and
IPknot respectively. We choose these two algorithms because
they are the state-of-the-art and get quite good accuracies on
predicting pseudoknots. Moreover, they use different energy
models as the scoring functions. HotKnots uses DP09 and
IPknot uses DP.

To evaluate the performance of prediction methods, sen-
sitivity (Sen) and positive predictive value (PPV) are used.
The definition of Sensitivity and PPV are given as follows:

PPV =
TP

TP + FP
, Sen =

TP

TP + FN

where TP (true positive) is the number of correctly
predicted base pairs, FP (false positive) is the number of
incorrectly predicted base pairs, and FN (false negative) is
the number of base pairs in the known structure that were
not predicted. In this evaluation, we run both GAknot and
GAknot 2.0 10 times to get average values of PPV and sen-
sitivity because they both base on genetic algorithm which is
a stochastic algorithm and 10 times are a reasonable number
of runs to show the stability of a stochastic algorithm.



TABLE I
10 RUNS OF GAKNOT 2.0 ON HK41. BOLD VALUES INDICATE THE BEST

RESULT AMONG 10 RUNS.

Run 1 2 3 4 5 6 7 8 9 10 ave

Sen
(%)

83.4 82.3 81.0 83.7 84.0 82.9 84.4 85.2 82.2 82.9 83.2

PPV
(%)

75.8 74.9 73.5 75.9 76.8 75.2 77.1 77.1 75.5 75.5 75.7

TABLE II
COMPARISON OF DIFFERENT ALGORITHMS ON HK41. BOLD VALUES

INDICATE THE BEST RESULT AMONG THE ALGORITHMS.

Algorithms Sen (%) PPV (%)

GAKnot 2.0 (average of 10 runs) 83.2 75.7
GAKnot (average of 10 runs) 80.1 74.9

HotKnots 64.6 68.4
IPknot with DP model 50.8 57.5

We test the algorithms on dataset HK41 defined in Section
III A. Table I shows the results of GAknot 2.0 (GAknot using
our proposed new energy model) in 10 runs on HK41 and
the average result. From this table, the best result (run 8) has
85.2% sensitivity and 77.1% PPV. The average of the 10 runs
also has 83.2% sensitivity and 75.7% PPV. In addition, the
performances of GAknot 2.0 are very stable among 10 runs.
Table II shows the comparison of different algorithms on this
dataset, in terms of PPV and sensitivity. Note that we test
IPknot using DP model except the second sequence (PDB
ID: 1Y0Q), which is predicted using McCaskill model [18].
The reason is due to the length of 1Y0Q, which has 299 nt
and it is too long for IPknot to use DP model. From Table
II, GAknot 2.0 is the best algorithm and it is shown that
the new energy model can improve the prediction sensitivity
by 3.1% (80.1% to 83.2%) and PPV by 0.8% (74.9% to
75.7%), compared to original GAknot (which uses DP09).
We can see that even the worst result of GAknot 2.0 (run
3 in Table I) is better than the average result of GAknot
using DP09. Therefore, from this dataset and using the same
algorithm, the accuracy of the new energy model is better
than DP09. In addition, GAknot 2.0 is better than the two
state-of-the-art algorithms, which are using erengy models
DP09 and DP respectively.

IV. DISCUSSION AND CONCLUSION

From the results in Section III, we can conclude that the
performance of the new model is better than that of DP09
and the original DP model when dealing with pseudoknots
prediction. The model is still not perfect, since it cannot get
100% accuracy, but it can give some hints on designing a
more accurate energy model. More specifically, we can see
that by recognizing the stems patterns, which are k-mers in
this work, we can capture which patterns can easily form
stems and we can exploit it to improve the energy model.

In this article, we have proposed a new energy model for
RNA secondary structure prediction with pseudoknots. We
have shown that how we use the existing, validated RNA

secondary structure to formulate penalty factors to improve
the prediction accuracy by the concept of k-mers’ normalized
occurrences. For future improvements, we may collect more
validated data to improve the factors and we may try other
ways to get more information from the data and not just
limited to k-mers.
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