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Abstract— A tomographic method that efficiently recon-
structs three-dimensional fields, despite the ill-posedness of
recovering a vector field from line integrals, is presented in this
paper. The analysis takes into consideration the methodology set
forth in [1] for 2-D reconstruction and demonstrates that with
the analogous discretization of the 3-D space and scanning lines,
data redundancy is achieved and the solution is obtained from
a linear equations system solution, using only information from
finite boundary measurements. The adequacy of the method is
illustrated by means of simulations on electrostatic fields. The
motivation behind this work lies in its potential to bring forward
an alternative brain mapping model from EEG recordings.

I. INTRODUCTION

Vector field tomography constitutes the methods used for
the reconstruction of a field from integral data. Recovering
a scalar field is a well posed problem and widely used in
biomedical and other applications, e.g., X-ray measurements,
Positron Emission Tomography (PET), seismic tomography.
However, several applications, such as blood flow imaging,
oceanography and photoelasticity, require the recovery of a
field with 2-D or 3-D components, a problem that is, by
definition, ill-posed. Mathematically, when integrating along
a line, the vector field tomography formula is summarized

IL =
∫

L
f ·ds, (1)

where f is the unknown field and ds denotes the direction of
the line L. For a two dimensional field, (1) coincides with
the Radon transform and can be analyzed in

IL =
∫

L
( fx coswx̂+ fy sinwŷ)ds, (2)

while in three dimensions it coincides with the ray transform
(the Radon transform integrating over planes),

IL =
∫

L
( fx cosφ sinθ x̂+ fy sinφ sinθ ŷ+ fz cosθ ẑ)ds. (3)

In the equations above, fx, fy and fz are the components of
the 2 or 3 dimensional field, w is the angle of the line L
with respect to the positive x-axis and φ , θ are the spherical
angles of the line.

Studies on the ill-conditioning of the inverse vector field
tomographic reconstruction have showed that a unique so-
lution can be reached provided that specific constraints and
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assumptions are met. Hence, Norton initially achieved the
recovery of the solenoidal component of a vector field, and
later both solenoidal and irrotational components in the case
of a divergenceless field [7], [8]. Braun and Hauck [9]
suggested both longitudinal and transversal measurements
for the full recovery of a vector field, a methodology that
was later extended to three dimensions by Osman and Prince
[10]. Yet, there are not many applications that make available
both types of measurements.

II. METHOD BACKGROUND AND POTENTIAL

It was firstly suggested in [1] that a solution to the ill-
posedness of a non-scalar field tomographic reconstruction
problem could be the analysis in the digital domain, i.e., the
discretization of both the field domain and the line integrals.
In particular, to retrieve a two-dimensional field f(x,y) in a
bounded square domain, the domain is divided into finite
tiles and the centers of the tiles are used as the points for
the numerical vector field reconstruction. Then, ideal sensors
are assumed, positioned at the middle points of the boundary
edges of all boundary tiles. The line segments connecting
all sensors apart from the ones lying on the same side are
also sampled with a step ∆s, the coordinates of the sampling
points are calculated and assigned to the nearest tile center.
Moreover, the angle w that defines the direction of each
line, is taken into account and used in the numerical sum
approximations to the line integrals. The equations develop
an overdetermined linear system, the solution to which is
given by the least squares method [12].

On the grounds that the solution of the derived system is
in correspondence with the inversion of the Radon transform,
the next works focused on reconstructing a vector field
while satisfying the Radon transform requirements [3], [4].
These postulate that in order to acquire efficiently accurate
medical image reconstruction, the Radon domain parameters
need to be sampled densely and uniformly [6]. To this end,
to compensate for the empirical sensor distribution of [1],
virtual sensors that correspond to uniform sensor positioning
were proposed in [3], where the values of the virtual sensors
are calculated via interpolation schemes. Later, an improved
method was presented in [4], where probabilistic weights are
employed to achieve approximate uniformity. The applied
sensor positioning results in a joint probability density func-
tion for the Radon parameters, which is then used to calculate
the weight for every equation of the linear system. Hence,
the equations are divided by their corresponding weights
and multiplied with the pdf that uniform sampling would
produce, leading to a more accurate reconstruction. Further,
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resolution issues were adressed in [2], where the sampling
bounds for the Radon parameters were set for the optimized
recovery of the 2-D vector field components.

The final goal for this recently developed methodology
is to propose an alternative, direct solution to the inverse
brain source localization problem from electroencephalogra-
phy (EEG) measurements, other than the standard dipole-
modelling or bayesian estimation techniques that are cur-
rently employed [11]. Reconstructing the bioelectric field
inside the brain can be viewed as a representation of the brain
state. Indeed, the psysical properties of this field conform
to the assumptions adopted in the introduced reconstruction
method. To this direction, it was showed in [5] that for
the recovery of a two-dimensional, irrotational field, the
discretization in the analysis constitutes a regularization
technique for the under-determined problem in the contin-
uous domain, by establishing a finite upper bound to the
solution error. The method introduced here aims to extend
the vector field reconstruction method straightforwardly to
three dimensions, in a simple impementation that will serve
as a basis for the adjustment of the method to fit the demands
of the inverse EEG problem.

III. PROPOSED RECONSTRUCTION METHOD

Let us consider the three-dimensional vector field f(x,y,z)
in a bounded, cubic space, as in Fig. 1, with the start being
at the center of the domain. The idea is to overcome the ill-
conditioning of the reconstruction problem and to create data
sufficiency by recovering all three components of the vector
field fx, fy, fz on specific sampling points of the space, using
many line integral measurements. To this end, the cubic space
is digitized to form a grid of P×P×P tiles, the centers
of which are taken to serve as the sampling reconstruction
points. Presuming that the edges length is equal to 2U ,
2U/P has to be an integer. A line cutting across the domain,
e.g., the segment AB of Fig. 1, is then assumed, with the
intersecting points, A, B having the coordinates xA,yA,zA and
xB,yB,zB, respectively. Based on spherical geometry, the line
segment parameters are obtained by

r =
√
(xB− xA)2 +(yB− yA)2 +(zB− zA)2, (4)

φ = arctan(
yB− yA

xB− xA
), (5)

θ = arccos(
zB− zA

r
), (6)

where r is the length, φ is the azimuthal angle and θ is the
polar angle of the segment. The unit vector in the direction
of the line is defined as

ŝ = cosφ sinθ x̂+ sinφ sinθ ŷ+ cosθ ẑ. (7)

Subsequently, using A as the initial point and with a step of
∆s, a sampling of the line segment is carried out, an example
of which is shown in Fig. 2. Every sampling point on the
segment has then coordinates increased by

∆x = ∆scosφ sinθ , ∆y = ∆ssinφ sinθ , ∆z = ∆scosθ . (8)

Fig. 1. A bounded cubic domain with edges equal to 2U , divided into
P×P×P tiles. The view is limited to three faces of the domain for better
visibility. A line segment AB, with direction vector ŝ crosses the domain.
The plane ℘ is normal to ŝ, while φ and θ are the azimuthal and polar
angle, respectively.

Taking into account that the maximum number of sampling
points that the segment can contain is given by

lAB =

⌊
r

∆s

⌋
, (9)

the coordinates of all the sampling points lengthwise for the
segment AB are given by

xl = xA + l∆x, yl = yA + l∆y, zl = zA + l∆z, (10)

where l ∈ [1, lAB]. In order to achieve the requisite data
sufficiency, each of these sampling points is assigned to
the closest tile center by employing a proximal interpolation
scheme

i =
⌈

xl +U
P

⌉
, j =

⌈
yl +U

P

⌉
, k =

⌈
zl +U

P

⌉
. (11)

The variables i, j, k suggest the integer enumeration of the
digital space, an example of which is depicted in Fig. 2.
Having acquired the reconstruction points that AB encloses
information about, the next step is to numerically approxi-
mate AB ’s line integral. Thus, the sum

IAB = ∑ fli, j,k(x,y,z) · ŝ ∆s (12)

is used, where fli, j,k(x,y,z) stands for the towards reconstruc-
tion vector field values on the points with the discretized
coordinates i, j, k, indicated by l, along the line AB.

For the formation of the method, assumtive sensors that
will provide the boundary measurements are placed in the
center of the outward faces of the border cubic tiles, as
in Fig. 2. Following the procedure described for the lines
that connect all the possible combinations of the boundary



Fig. 2. The discretization of the cubic domain and of the AB scanning line
segment of Fig. 1. Here, the circular markers on the centers of the boundary
faces of the boundary tiles represent the sensor arrangement, as the asterisk
markers symbolize the sampling points along AB with a step of ∆s. The
cubic tiles that are depicted show the (i, j, k) enumeration used, the rest of
the tiles following the same pattern.

point sensors, excluding sensors that lie on the same face of
the cubic space, a system of equations of the form (12) is
yielded. Given that the unknown values of the vector field
are

n = 3×
(

2U
P

)3

, (13)

while the number of the resulting equations is equal to

m = 15×
(

2U
P

)4

, (14)

the system can be synopsized in a structure of the form

b = Ax, (15)

where b is the m×1vector that contains the sensors measure-
ments, x is the n×1 vector that contains the measurements
for the line integrals and A is the m×n system matrix, that
contains the coefficients that associate each scanning line
with the field values in the corresponding tiles. In addition,
as m > n, the system is now well-conditioned and can be
solved uniquely with the least squares method.

IV. SIMULATION RESULTS

Following in the footsteps of [1]-[5], cases of an electro-
static field reconstruction were considered for the demonstra-
tion of the method. The field produced by electric monopoles
is a suitable model for evaluation, as its irrotational property
allows the estimation of the right part of the integral of (1)
based on the difference of the voltage measurements between
the two intersection points of the line with the domain.
Thus, given the point sources, the vector b of the system
was formed by calculating the voltage difference from all
sensor couples. Using the methodology presented and the
line orientation parameters, the coefficients of the matrix A
were determined. As a result, the vector field components
were retrieved using only boundary data.

Examples of reconstruction results using the proposed
methodology are depicted in Fig. 3. In these examples, U
was equal to 3 and P was taken equal to 1, leading to
216 cubic tiles. There were 3 unknown field components
in every tile, thus the number of the unknows was 648.
The abovementioned placement of the sensors gave rise
to 19440 combinations, hence, 19440 equations, resulting
in an over-determined system. The voltage values in these
pretermined point were extracted using Coulomb ’s law,
while the sampling step along the lines was chosen to be 0.1.
Finally, for comparison reasons, the theoretical field that the
same point sources would cause was obtained with Coulomb’
s law. In Fig. 3(i), the theoretical and reconstructed field
were created by one point source placed at (11, 11, 11),
while Fig. 3(ii) ’s field was created by four point sources,
with correspondent locations at (10, 10, 10), (-10, -10, -10),
(10, 10, 0), (-10, -10, 0). In both cases Fig. 3(i) and Fig.
3(ii), subfigures with index (a) present the theoretical field,
while those with (b) correspond to the reconstructed field.
The relative magnitude error is demonstrated in subfigures
with index (c) for every reconstruction point, while for (d)
subfigures the angle difference between the two fields was
calculated based on

Angular Error = arccos
(

ExT ExR +EyT EyR +EzT EzR

ET ER

)
,

(16)
where subscript T denotes the theoretical field and R denotes
the reconstructed field. Thus, the numerator of (16) includes
the three components of the fields, while the denominator
includes their absolute values. Finally, in subfigures (e), (f)
the histograms of the two kinds of errors are shown.

From the inspection of Fig. 3, the reconstructed fields are
optically equivalent to the theoretical ones. Deviations from
the theoretical field are anticipated, since the discretization
process and the interpolation used for the sampling points
assignment introduce errors. However, in the case of one
source, the magnitude and angular errors are quite low,
concentrating below 5% and 3◦, respectively. In the case
of Fig. 3.(ii), both errors are increased, especially in the
boundaries of the y-axis, presumably because they lie closer
to the sources’ locations. The highest errors are seen in the
magnitude values, while the orientation of the reconstructed
field presents adequate similarity to the theoretical angles.

With a view to evade handling singularity issues, the point
sources were, thus far, placed outside the bounded domain.
It was observed, however, that the closer the sources are
located, the more errors in magnitude and angle appear. In
the examples presented, the condition number of the system
matrices A was equal to 62.88, confirming a well-conditioned
problem. In some cases of the grid being refined, the system
is turning rank deficient. To this end, regularization and
stability issues need to be adressed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an extension of the vector field tomogra-
phy method introduced in [1] and revisited in [2]-[5] to
three dimensions was formulated. Whereas reconstruction



Fig. 3. Simulated examples and the performance of the proposed method. (i) One point source is placed at (11, 11, 11). (ii) Four point sources are placed
at (10, 10, 10), (-10, -10, -10), (10, 10, 0) and (-10, -10, -10), respectively. In both cases (i) and (ii), (a) is the theoretical field calculated from Coulomb’
s law, (b) is the reconstruction achieved by the method based on boundary data predetermined by Coulomb’ s law, (c) shows the relative magnitude errors
on the sampling points between (a) and (b) in slices of the z-axis and (d) shows the correspondent angular difference. Finally, the distributions of these
errors are depicted in histograms (e) and (f), respectively.

of a vector field with two or three components based on
integral data is considered an under-determined problem,
the methodology adopted discretizes both the field domain
and the scanning lines and recovers the unknown field in
predetermined sampling points of the grid, thus generating
data redundancy. The recovery depends only on boundary
data and is derived as the solution of a linear sytem. The
simulation results show that the method performs efficiently
in 3-D, retrieving all three components of the unknown field.

Keeping in mind that the aimed application of the method
is the EEG-based brain mapping problem, future work
will include the stability issues already mentioned, as it
is necessary for the method to be developed robustly, and
the adjustment to more realistic head models. Following
implementations also intend to incorporate more advanced
techniques of discretizing the bounded 3-D domain. Finally,
experiments with EEG data and comparisons with the current
inverse EEG methods will need to be performed.
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