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Abstract—The protein docking problem refers to the task of
predicting the appropriate matching of one protein molecule (the
receptor) to another (the ligand), when attempting to bind them to
form a stable complex. Research shows that matching the three-
dimensional geometric structures of proteins plays a key role in
determining a so-called docking pair. However, the active sites
which are responsible for the binding do not always present a
rigid-body shape matching problem. Rather, they may undergo
deformations when docking occurs, which complicates the pro-
cess. To address this issue, we present an isometry-invariant and
topologically robust partial shape descriptor method for finding
complementary protein sites. Our method employs Heat Kernel
Signature shape descriptors which are based on the diffusion of
heat on surfaces. Our experimental results against the Protein-
Protein Benchmark 4.0 demonstrate the viability of our approach.

I. INTRODUCTION

Proteins are essential to the sustenance of living organisms.
They are present in all aspects of life processes performing a
multitude of different roles. This ranges from playing the role
of enzymes (biochemical catalysts) which rapidly accelerate
biological reactions, to being structural components of cells
and organisms providing support and also facilitating the
passage of certain molecules between different regions of cells
[1]. Some key protein functions that are of major interest are
their ability to regulate biochemical activities in target cells,
to serve as receptors for hormones and various ligands, and to
act as modifiers in cell-to-cell interactions. These capabilities
are of principal significance because, they are essential in the
drug design process when aiming to find cures for diseases
and ailments, such as designing antibodies that defend against
infections [1].

One specific form of protein-protein interaction which is
under active research is protein-protein docking, (also known
as protein-ligand docking, or generically called “the protein
docking problem”) [1], [2]. The protein docking problem
refers to the method of predicting the appropriate pairing and
alignment of a protein molecule (receptor, host or lock) with
respect to another protein (ligand, guest or key) when bound
to each other on their active sites to form a stable complex or
dimer. Finding two binding proteins is a key step in identifying
prospective drug candidates during the process of drug design.
The problem of finding appropriate matches is made difficult
by the complex geometric structure of proteins and the several

Fig. 1: A simplified illustration of a ligand (yellow) docking
to a receptor protein (blue) to form a stable complex.

thousands of protein sequence entries to be considered. Also,
other complicating factors are the several degrees of freedom
in terms of alignment and orientation, and the possibility of
flexible deformations the active sites may undergo [1], [2]. Fig.
1 gives a simplified illustration of protein docking.

II. RELATED WORKS

Current techniques that address the protein docking prob-
lem fall within two main areas, namely biological and com-
putational. Biological methods mainly deal with in vitro
(laboratory) experimentations and mostly provide definitive
results on docking pairs. However, they require very expensive
laboratory equipment, appreciable time and human resources.
Computational methods, on the other hand, seek to abate such
costly necessities by using biological principles, mathematical
theories and computing applications to address the protein
docking problem [3].

Computational methods may be placed under two broad
categories, namely matching methods and docking simulation
methods. Matching methods aim to dock a target ligand
structure into a created model of the receptor active site, by
comparing their structural geometries. The docking methods,
on the other hand, attempt to model the docking process
by randomly exploring different translations, orientations and
conformations of a target ligand to a receptor protein, with the
aim of finding an ideal docking site [4].

Autodock, a widely used approach, is the result of the
work of Morris et al [5]. They use three stochastic search
methods, namely Lamarckian, traditional genetic algorithms
and Monte Carlo simulated annealing, for predicting the bound
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conformations. Atilgan et al [2] introduce AutoDockX which
extends the work of [5] to address the deficiencies arising
from local optima and premature convergence issues associated
with simulated annealing and traditional genetic algorithms.
They observe that these issues are usually offset by doing
multiple runs in order to obtain reasonable results, but end
up being computationally more expensive and consequently
time consuming. They present the Age-Layered Population
Structure (ALPS) algorithm, a so-called sustainable genetic
algorithm, to address the shortcomings of the core algorithms
implemented in AutoDock [5].

Matching approaches, such as the technique developed by
Axenopoulos et al [6] adopt a geometry-based shape match-
ing technique, based on so-called Shape Impact Descriptors
(SID). This is a rotation-invariant 3D shape descriptor which
alleviates the need for repeated searches for initial alignment.
The removal of this requirement reduces the computational
needs as compared to the relatively more exhaustive free-
energy optimization search methods. However, recall that
the structures of active sites do not remain rigid, but may
bend or contort to enable binding. The applicability of the
SID approach is therefore limited, as it is only suitable for
rigid body comparisons. The research as presented in our
paper addresses this shortcoming, as will be discussed next.
To this end, we present our ProtoDock algorithm, which is
an isometry-invariant, topologically robust partial deformable
shape matching method.

III. PROTODOCK ALGORITHM

Our ProtoDock algorithm performs the partial shape match-
ing in three (3) main phases. First, we divide a given three-
dimensional object mesh (corresponding to a given protein)
into salient segments. We achieve this process using a spectral
segmentation method which performs this partitioning not di-
rectly on the three-dimensional mesh, but on its spectra i.e. its
eigenvalues and eigenfunctions. Secondly, once the segments
are obtained, we create an isometry-invariant, topologically
robust shape descriptor for each segment. This descriptor is
based on the Heat Kernel Signature (HKS) [7]. Thirdly, three
different methods—Bag of Features (BoF), Closest Medoid Set
(CMS) and Medoid Set Average (MSA)—are used to obtain
the final descriptor vectors from the representative vectors
(medoids) after clustering the HKS values. The computed
descriptor vectors are used in the final stage of our ProtoDock
algorithm to find the matching (and possible docking) pairs
between the segments by calculating the distance between the
descriptor vectors.

A. Mesh Segmentation using Spectral Analysis

We begin our ProtoDock algorithm by first performing a
segmentation on the three-dimensional mesh representation of
the proteins by partitioning the mesh into disjoint regions
of connected components (i.e. sets of vertices or faces).
We employ a spectral analysis approach which performs the
segmentations on the eigenvalues and eigenvectors of the
underlying mesh. We proceed to obtain the eigensystem by
first computing a Laplacian L from the graph G induced by
the input three-dimensional mesh M . Reduced to a geometric
space-partitioning problem on the Laplacian, the segmentation
is obtained by embedding the graph G into the space Rk by

clustering (using the K-Means algorithm) the first k eigenvec-
tors of the Laplacian.

The continuous definition of the Laplacian or Laplace-
Beltrami Operator is obtained by letting S be a smooth
manifold with a Riemannian metric and with boundary, ∇
denote the gradient. The Laplace-Beltrami operator ∆ (or ∇2)
of a given twice continuously differentiable function f ∈ C2,
is the divergence (div) of the gradient (grad) of S in Euclidean
space [9]

∆f = ∇2f = div grad f = ∇ · ∇f = ∇2f (1)

Consider a discrete domain M as a triangular mesh with
n vertices denoted by M = (V,E, F ), let V be the set of
vertices, with each vertex i ∈M denoted in absolute Cartesian
coordinates as, vi = (xi, yi, zi), E be the set of edges, and F
be the set of faces. The discrete solution to (2) is approximated
by a piecewise function over the triangular mesh f : M →
R. The function f linearly interpolates values of f(vi) over
the vertices of M . The discrete Laplacian is therefore often
represented as [10]

∆f(vi) =
1

di

∑
j∈N(i)

wij [f(vi)− f(vj)] (2)

where, N(i) are the members of the immediate neighbourhood
of vertex vi (i.e. the degree or valence of vertex vi), di is the
associated mass assigned to vertex vi, and wij is the symmetric
weight assigned to the corresponding edge between vertex vi
and vj . A subsequent matrix representation of (3) defines a
vector of the function for all the vertices vi to vn as f =
[f(vi), . . . , f(vn)]T.

A weighted adjacency matrix, W = (wij), contains all
the corresponding neighbour edge weights for all the vertices.
This matrix is usually symmetric and sparse. Also, consider
a volume matrix U = diag(u1, ..., un), which is a diagonal
matrix with elements on its leading diagonal ui defined as ui =∑
j∈N(i) wij . Given the weighted adjacency matrix W and the

volume matrix U , we define the stiffness matrix A as A = U−
W , and the lumped mass matrix D as D = diag(d1, ..., dn).
Finally, the Laplacian L is defined with respect to the stiffness
and lumped mass matrices as

L = D−1A (3)

We employ the Laplace-Beltrami operator as presented by
Desbrun [8] which has been shown to be stable, and also ade-
quately approximates the continuous operator. It is a variation
of the cotangent scheme in that, the edge weights wij are
assigned by computing

wij =
cot(αij) + cot(βij)

2
(4)

with a corresponding vertex weighting obtained by dividing
the area of the neighbouring triangles of a vertex by 3 (i.e.
di =

∑
N(i)

Ai
3 ), where A is the area of a given triangle, and

N(i) is the neighbourhood of vertex i.

With the Laplacian matrix defined in (4), the Laplacian
eigenvalue problem can be written as

Lf = λf (5)



Equation (5) can also be expressed as a generalized symmetric
eigen decomposition problem with respect to the stiffness and
mass matrices as

Af = λDf (6)

With the first neig smallest eigensystem of the Laplacian
computed, we represent its eigenvectors as a column-major
eigenvector matrix Evec by stacking the eigenvectors into
an n × neig matrix with each row normalized. We derive a
segmentation on mesh M by using K-Means clustering to
obtain k clusters from Evec, where each row of Evec is treated
as a point in neig–dimensional space. We then map the cluster
indices to each vertex v in the mesh. The k set of vertices,
each with elements obtained from the connected vertices v
assigned to a particular cluster, form a corresponding single
object segment.

B. Segment Description using HKS

After obtaining the segments, our algorithm constructs a
shape descriptor for each of the individual segments. We
employ a feature-based shape descriptor based on the Heat
Kernel Signature (HKS) [7]. The underlying concept that
serves as the basis for the HKS is the principle of heat diffusion
(or propagation) over the surface of three-dimensional objects
as completely described by the heat kernel associated with
the object’s Laplace-Beltrami Operator. The HKS serves as a
highly informative pointwise descriptor obtained by restricting
the heat kernel to the temporal domain over the object. It
has been shown to possess several useful properties. These
include providing an efficient multi-scale organization of in-
trinsic geometric information of a given object or shape, being
concise and commensurable, and being stable and robust to
shape perturbations [7]. The heat propagation of a compact
Riemannian manifold M , possibly with boundary, is governed
by the heat equation

∆Mu(x, t) = −∂u(x, t)

∂t
(7)

where ∆M is the Laplace-Beltrami operator of the manifold
M , and u is a continuous smooth function. The Dirichlet
boundary condition u(x, t) = 0, ∀x ∈ ∂M, ∀t, will have to
be satisfied for M with boundaries. By considering only the
temporal domain for any given point x on the manifold M ,
and given the Laplace-Beltrami operator of the manifold has
a discrete eigen decomposition of the form ∆Mϕi = λiϕi,
where λi and ϕi for i = 0, 1, 2, . . . are the eigenvalues
and eigenfunctions respectively, then the heat kernel (the
fundamental solution of the heat equation) can be written as

Kt(x, y) =

∞∑
i=0

e−λtϕi(x)ϕi(y) (8)

The subsequent Heat Kernel Signature (HKS) for the
given point x can then be given as a compact n-dimensional
descriptor vector p(x) = (p1(x), ..., pn(x))T, which contain
the elements [11]

pi(x) = c(x)Kti(x, x) (9)

where c(x) is a normalization constant such that ‖p(x)‖2 = 1 .

Our algorithm constructs the Heat Kernel Signatures for
each of the prior obtained k segments considered as an
independent mesh Mi, by first computing the Laplacian and
its corresponding eigensystem of each mesh. A heating times
list {t} of time intervals tint starting from an initial value to
a set tmax is computed. Now, given the obtained eigenvalues,
their associated eigenvectors, and the heating times {t}, for
each vertex point x in each segment mesh, we compute the
normalized tint-dimensional Heat Kernel Signature descriptor
vector p(x).

C. Descriptor Vector Computation

The HKS for a mesh represents a considerable amount of
information, since each point of the mesh is characterised by
its own HKS. In order to obtain a more compact descriptor,
we proceed by first clustering each HKS. Each cluster is char-
acterised by its medoid, which is the HKS associated with the
point that is the closest to the cluster centre as resulting from
the application of the K-Means clustering algorithm [11]. The
set of the HKSs associated with the medoids P = {p1, . . . ,pl}
thus forms the basis for obtaining the shape descriptors. These
medoids are used in three different ways to construct three
different types of descriptors, namely the Bag of Features, the
Closest Medoid Set and the Medoid Set Average methods.

1) Bag of Features (BoF): For the Bag of Features
(BoF) method [11], we consider the medoid set (also called a
vocabulary set of “geometric words”) of size l. For each point x
on the segment mesh M , with its corresponding HKS p(x), we
compute the feature distribution Θ(x) = (θ1(x), . . . , (θl(x))T,
an l × 1 vector which is defined as

θi(x) = c(x)e−
‖p(x)−pi‖2

2σ2 (10)

where c(x) is a normalization constant such that ‖θ(x)‖2 = 1,
and σ is set to the median of the geometric words.

A final l × 1 feature descriptor vector J is then obtained
by integrating over the entire segment mesh M as J =∫
M

Θ(x)da(x). We accomplish this for each segment mesh
by first stacking our computed feature distributions Θ(x) in
row-major order and summing up all the columns of the matrix.

We proceed to obtain possible docking sites by performing
a segment matching from different segments of other protein
structures by calculating the Euclidean distance between their
descriptor vectors. For example, given the descriptor vectors,
J(M) and J(N) for two segments M and N , the similarity
is equal to

dBoF(M,N) = ‖J(M)− J(N)‖2 (11)

2) Closest Medoid Set (CMS): We introduce the first of
our two novel descriptor methods which we refer to as Closest
Medoid Set (CMS). Unlike the Bag of Features method, the
CMS method employs the l × tint normalized medoid set
of a given segment as its descriptor, where tint is the time
intervals or the number of time steps. The motivation behind
employing only the medoid set comes from the observation
that, the medoids are representative of the entire mesh to which
they belong, given that we have a sufficient number of time
intervals and medoids. To this end, we proceed to find the sum
of the smallest distances between each pair of the medoids.



Here, the similarity between two segments M and N , each
with their respective medoid sets PM = {pM1, . . . ,pMl} and
PN = {pN1, . . . ,pNl} is defined by

dCMS(M,N) =

l∑
i

minj∈[1, l]‖pMi − pNj‖2
l2

. (12)

3) Medoid Set Average (MSA): The descriptor obtained
by the MSA method is closely related to that of the CMS
method in that it also employs the medoid set. However, after
normalization, we form our final 1 × tint descriptor vector
J, from the medoid sets of a given segment mesh by finding
the column-wise average of the row-major l× tint medoid set
matrix. The similarity measure between two segments M and
N is then calculated by the Euclidean distance between the
two descriptors, as in

dMSA(M,N) = ‖J(M)− J(N)‖2 (13)

This subsection described the three HKS-based methods
that we employ to create segment descriptors. Next, we discuss
our experimental evaluation.

IV. RESULTS

We conducted a number of experiments to assess the
success of our ProtoDock algorithm. We used protein structure
data obtained from the Protein Data Bank [12] and the Protein-
Protein Benchmark Version 4.0, as presented by Hwang et al
[13]. This benchmark contains a total of 124 known protein
docking pairs and their subsequent complexes. The benchmark
also provides a classification derived from the measure of
“difficulty” of predicting the pairings for docking algorithms.
These three (3) proposed levels of difficulty—Rigid body
conformations, Medium difficulty, and Difficult— are based
on whether, and by how much the active sites of a given
pair of proteins undergo flexible deformations after docking.
That is, the difficulty is measured by the structural difference
between the bound and the unbound forms of the pairing
proteins, in terms of an I-RMSD value. I-RMSD is defined as
the Root Mean Square Distance/Deviation (RMSD) between
superimposed bound and unbound structures calculated using
the interface residue Cα atoms of both binding proteins. Rigid
body conformations (i.e. the least difficult) are noted as having
an I-RMSD ≤ 1.5Å (Å is a unit length of 0.1 nanometers),
with Medium difficulty conformations having 1.5Å < I-RMSD
≤ 2.2Å, and Difficult ones having I-RMSD > 2.2Å.

For our experiments, we consider complexes from all three
of the aforementioned difficulty categories. Our algorithm
utilizes three-dimensional meshes obtained from the molecular
surface (also known as the Solvent Excluded Surface (SES))
representation of the proteins using BALLView [14]. The
molecular surface is computed using the rolling ball algorithm
with employs the use of a sphere of a certain radius to
probe along the surface of the Van Der Waal atoms of a
given molecular/protein structure. The trace of the closest
point of the solvent probe when rolling along the surfaces
of the atoms forms the molecular surface or SES. Figure 2
shows a molecular surface representation of the protein 1ZM8
(Nuclease A). Also, as noted above, we employ the discrete

Fig. 2: A molecular surface (Solvent-Excluded Surface (SES))
representation of the 1ZM8 (Nuclease A) protein structure.

TABLE I: Protein structures and their known docking pairs

DIFFICULTY LEVEL COMPLEX RECEPTOR LIGAND

Rigid Body 1GL1 1K2I 1PMC
1JTG 3GMU 1ZG4
2ABZ 3I1U 1ZFI

Medium 1MQ8 1IAM 1MQ9
1SYX 1QGV 1L2Z
1R6Q 1R6C 2W9R

Difficult 1F6M 1CL0 2TIR
2IDO 1J54 1SE7
2O3B 1ZM8 1J57

Laplace-Beltrami Operator as presented by Desbrun [8]. This
method uses the area of neighbouring triangles for vertex
weighting, and the cotangent scheme for edge weighting in
constructing the corresponding stiffness and mass matrices. We
select the first 100 eigenvalues and their associate eigenvectors.
A time interval of 5 steps with a maximum time of 100 is
chosen when computing the Heat Kernel Signatures. Also,
medoid set sizes of 50 and 80 are selected for the segment
mesh sizes of 3,500 and 5,000 vertices, respectively. These
values were set by inspection.

Table I shows the list of protein structures used in our
experimentation. We select three (3) complexes each from the
three (3) difficulty groups. We also consider a BALLView
meshing resolution of 3.5 when generating the molecular
surface meshes. We first provide a visual illustration of a
generated pairing showing the segment meshes that were
matched. Figure 3 shows the pairings obtained from 1ZM8-
2TIR and 3GMU-1ZG4 respectively, which both appropriately
return the first closest matching segment from the benchmark.

Table II and Table III show the ranking of the closest
matching pairs obtained from our experimentation for seg-
ments of average vertex count of 3,500 and 5,000 for the three
(3) descriptor methods, namely the Bag of Features (BoF),
Closest Medoid Set (CMS) and Medoid Set Average (MSA).
We show the number of segment comparisons performed and
also rank the closest match for each of the receptor-ligand
proteins for the three descriptor methods. Note that the number
of segment comparisons range from 521 to 832. Recall that
the distance measure used for computing the similarity is the



Fig. 3: Closest matching segments for the 2O3B and 1JTG complexes, from the pairings of 1ZM8 to 1J57 and 3GMU to 1ZG4.

TABLE II: Protein-protein Segment Matching at Average Mesh
Vertex Count of 3,500

DIFFICULTY PAIRING SEG. COMPARISONS BoF CMS MSA

Rigid Body 1K2I-1PMC 704 9 20 22

3GMU-1ZG4 576 2 1 4

3I1U-1ZFI 832 18 3 39

Medium 1IAM-1MQ9 704 1 16 1

1QGV-1L2Z 512 1 1 2

1R6C-2W9R 576 11 5 7

Difficult 1CL0-2TIR 640 10 12 8

1J54-1SE7 576 7 17 8

1ZM8-1J57 640 8 3 6

TABLE III: Protein-protein Segment Matching at Average
Mesh Vertex Count of 5,000

DIFFICULTY PAIRING SEG. COMPARISONS BoF CMS MSA

Rigid Body 1K2I-1PMC 308 8 9 12

3GMU-1ZG4 264 5 1 1

3I1U-1ZFI 396 1 34 22

Medium 1IAM-1MQ9 352 11 12 22

1QGV-1L2Z 220 1 4 24

1R6C-2W9R 264 11 6 4

Difficult 1CL0-2TIR 770 36 8 16

1J54-1SE7 308 4 20 13

1ZM8-1J57 308 10 4 6

Euclidean distance. Figure 4 shows the corresponding line
graphs for Table II and Table III.

The results in Table II show that the three descriptor
methods are all able to rank the known pairings. Specifically,
for the matching of the six pairs that are considered difficult
or moderately difficult, the Bag of Features (BoF) and Medoid
Set Average (MSA) methods correctly rank the matches within
the first 11 closest pairing. For example, for the 1QGV-1L2Z
pairing, there were 512 segment comparisons performed, and

both the BoF and CMS methods ranked the correct segments
from the receptor and the known ligand as the closest match.
The MSA technique also performs well, by e.g. ranking the
correct pair for 1IAM-1MQ9 first.

From Table III, we observe complimentary retrieval results
when the average vertex count is increased to 5,000 with a
subsequent surface area per segment of about 6.25× 108 Å2.
That is, in 63.0% (17/27) of the cases, the retrieval rates
when using an average vertex count of 3,500 are equal, or
higher, to the results as presented in Table III. However, given
the variations in docking sites for certain pairing proteins,
we note that the rankings for e.g. the 1J54-1SE7 and 1CL0-
2TIR pairings, show closer matches for this larger segment
size comparisons for the BoF and CMS methods, respectively.
This indicates that the resultant area of about 4.37× 108 Å2,
forms an adequate segment size for comparing the segments.
This also suggests that an increase in the number of segment
sizes may produce more insights into the possible matching
segments, given that it will sufficiently cover the variations in
the sizes of the docking sites for different protein complexes.

In summary, our results show that our ProtoDock algorithm
is able to accurately find the correct matches. The three
variations of the descriptor methods complement one another
well. Given the varying sensitivity of the different descriptor
methods, consideration may be given to obtaining a single
rank value for each segment matched, based on the different
ranks returned by each descriptor method. In this way, the final
cumulative rank may be guided by considering the confidence
assigned to each descriptor method, similar to ensemble-based
procedures frequently used in Machine Learning [16].

V. CONCLUSION

We have presented our isometry-invariant deformable shape
matching algorithm for addressing the protein-protein docking
problem. Our approach employs Heat Kernel Signature de-
scriptors which are based on the heat diffusion on surfaces.
Our results show the viability of our method, especially being
used fruitfully as a pre-filtering technique to the more com-
putationally expensive but exhaustive methods. Future work
will concentrate on finding the final geometric conformation
between retrieved matching segments. We are also interested



Fig. 4: A graph showing the rank of the closest matching segments for each known protein pairing (and the number of segment
comparisons) with average vertex count of 3,500 (first) and 5,000 (second) for BoF, CMS and MSA descriptor methods.

in investigating the appropriateness of ensemble-based ap-
proaches [16]. Here, the general idea would be to use a form
of majority or weighted voting during ranking. Subsequently,
the final cumulative rank is influenced by the confidence
assigned to each descriptor method. Interest also lies in finding
intelligent computational methods for selecting the different
input parameters (e.g. heating time intervals and the word
count) when computing the Heat Kernel Signatures. Also,
different Laplace-Beltrami Operators and distance measures
will be considered.
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