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Abstract— Breast cancer can be prevented with regular mam-
mography screening. Yet, the incorporation of Computational
Intelligence relies on training classifiers on a set of predefined
Regions of Interest (ROIs). Data Clustering has been applied
to address the problem of ROI detection, yet no extensive
research has been carried out on which algorithm to utilize.
This contribution focuses on microcalcification clustering as
a Data Clustering application, giving insights concerning the
performance of three main clustering algorithms.

I. INTRODUCTION

Digital mammogram screening remains the most efficient

way of early breast cancer detection. Radiologists utilize

computer systems in an attempt to reduce the number of

misdiagnosed cases. Such systems are divided into two

categories. Computer Aided Detection Systems that aid

the radiologist through the use of image processing tools

(CADe systems) and Computer Aided Diagnosis Systems

that provide a provisional diagnosis to the radiologist (CADx

systems) [1]. Both system types employ image processing

tools. However, microcalcifications and noise appear indistin-

guishable on an image. The reason is that microcalcifications,

as well as noise, appear on a mammogram as small bright

spots. Hence, the step of data preprocessing is essential for

the success of a CADx system.

Current CADx systems employ Computational and Artifi-

cial Intelligence methods such as Artificial Neural Networks

(ANN) [2] and Support Vector Machines (SVM) [3] to de-

termine whether a given microcalcifications grouping depicts

an actual cluster of them or simply noise signals. Some

other approaches involve the usage of Fuzzy C-means or

Possibilistic Fuzzy C-means (FCM and PFCM respectively).

Finally, the usage of population based optimization is not

new to this problem, since Genetic Algorithms (GA) have

been already applied [4].

Yet these algorithms are trained on ROIs depicting clusters

located either by processing the image using trivial clustering

rules, or by segmenting the image into distinct or overlapping

regions. In this contribution, probable microcalcifications are

clustered together by applying more sophisticated clustering

algorithms such as DBSCAN, Affinity Propagation (AP) as

well as an in house developed clustering algorithm called In-

telligent Unsupervised Clustering (IUC). Applying clustering
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algorithms to create useful clusters of probable microcalcifi-

cations is not new to this problem [5], [6]. However, in most

cases it is combined with a classification step.

This contribution analyzes the preprocessing step in Sec-

tion III, before describing the clustering algorithms used in

Section IV as well as the evaluation measures in Section V.

Thereafter, the experimental setup is described in Section VI

as well as the results obtained. Finally, some concluding

remarks are made in Section VII.

II. DATASETS

The Digital Database for Screening Mammography

(DDSM) [7], [8] was used. DDSM consists of 2620 cases.

Each case consists from up to 4 mammograms. Resolution of

these images varies from 42µm to 50µm. Malignant cases as

well as cases with benign findings are accompanied by a list

of ROIs as defined by radiologists. Out of these cases only

images with microcalcification findings were considered,

since the aim of this contribution is to investigate some

algorithmic schemes that are able to identify and cluster

together, microcalcifications belonging to the same group.

Under the assumption that single microcalcifications or

small groups of microcalcifications may be noise, only

regions with density in a pre-given threshold are kept. More

precisely, for each image the maximum microcalcification

object density is evaluated, and points residing in areas with

at least p% of the maximum density are preserved. p’s values

used are 40,50,60,70,80 as well as 90. Out of these files,

only files that contain microcalcifications are considered.

Thus, 6 instances of each processed image were created.

Each instance corresponds to a microcalcifications dataset.

Hereafter, the dataset created for p = 40 will be addressed

as p40 and so on. For the purposes of the study, the available

number of images suitable for analysis was sufficiently large

to allow for a hold-out validation method. Thus, we created

a train set and an independent test set in order to achieve

stronger validation. The sizes of the datasets are summarized

in Table I.

p% values: 40 50 60 70 80 90

train 181 175 150 127 93 55

test 180 174 149 127 92 54

TABLE I

NUMBER OF IMAGES FOR TRAIN AND TEST DATASETS
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III. PREPROCESSING

At the preprocessing step each image is transformed from

a grayscale image to a dataset represented in the Vector Space

Model (VSM). In order to achieve this, the image is initially

segmented by a 50× 50 lattice. Each dimension is divided

into 50 sections and hence the image is divided into a total

of 2500 segments. For each image the breast boundary is

determined and a filtering process is applied on the image

region lying inside the breast boundary.

Each segment is determined whether it is part of the

breast or depicts part of the remainder of the image and

hence contains solely noise. This is achieved by using breast

boundaries according to segmentation of the breast region as

introduced by Ojala et al. [9]. The breast region segmentation

method is a five step process, hereby shortly described.

The process of breast region segmentation starts by analyz-

ing the histogram of a given image. Based on areas of high

pixel intensity, a rough breast boundary is created. As a next

step morphological filtering based on the common dilation

and erosion operations is applied to the image. Hence, a

more accurate boundary can be formed which still contains

a large part of the pectoralis muscle tissue. By locating the

narrowest line above and underneath the breast, the breast

boundary is restrained to the actual breast. Finally, a Fast

Fourier Transform is applied to smoothen the image. Once

the breast boundary is determined, areas describing a part

of the breast, are filtered by the process proposed in [10].

In short, the algorithm performs unsharp masking and block

averaging, evaluating the resulting image’s variance under a

Noise model. The pixels that differentiate from noise pass

from an adaptive filter as introduced in [11] by Lorenz to

reveal the microcalcifications.

As a result of the aforementioned process, a binary image

is created. Out of this image, a set of candidate micro-

calcifications is transformed to a n× 2 matrix where each

line contains the coordinates of the center of each poten-

tial microcalcification. In order to achieve this, the image

is segmented into group of 8-connected neighborhoods of

pixels. Such neighborhoods are dropped if they consist of less

than 4 pixels as too small to represent a microcalcification.

The remaining neighborhoods are considered as potential

microcalcifications. Their center is calculated as the average

x-coordinate and y-coordinate of each pixel belonging to a

potential microcalcification.

IV. CLUSTERING ALGORITHMS

Three clustering algorithms, have been compared in order

to cluster microcalcifications in groups that will enhance the

performance of a CADx system.

A. Intelligent Unsupervised Clustering (IUC)

This algorithm is an evolutionary clustering algorithm

introduced by Antzoulatos et al. [12]. Its concept is the

combination of an evolutionary algorithm with a windowing

technique and aims to discover the clusters of the dataset in

an iterative process. It should be noted that, the proposed

methodology can utilize any evolutionary algorithm as well

as any computational swarm intelligence scheme. As in [12],

the Differential Evolution (DE) is applied to optimize the

Window Density Function (WDF), in order to find a region

of high density.

WDF expresses the density of the region (orthogonal

range hereafter called window) around a point. Its size is

defined as α and since WDF is evaluated as the cardinality

of a set, it holds that WDFα (z) > 0. The discovery of

high density regions of the datasets through the WDF is a

maximization problem, hence −WDF is utilized by DE as the

fitness function. The points that are included in this region

can be effectively estimated using computational geometry

methods [13]. Initially, DE locates the position z0 in the

image with the highest density. A window w of size α
centered at z0 is constructed. This window, which represents

the core of the cluster, is enlarged as much as possible

over one coordinate and, afterwards the next coordinate is

considered. The points residing inside it are removed from

the dataset and DE is reapplied to locate an additional cluster

center. Once only noise remains in the dataset, this iterative

process terminates. Finally, all detected clusters are merged.

In this contribution, IUC has been modified to rerun if

less than 3 or more than 10 clusters are located. Each time

IUC repeats the clustering process, it slightly modifies its

parameters to adjust itself into finding more or less clusters

than expected. No more than 10 reruns are allowed in order

to avoid infinite loops, regardless of the number of clusters

located.

B. DBSCAN

DBSCAN (Density Based Spatial Clustering of Appli-

cations with Noise) [14] relies on a density-based notion

of clusters and it can deal with arbitrary shaped clusters

in a single-scan mode. DBSCAN aims to group adjacent

points into clusters based on local density criterion. This

algorithm is closer to the notion of cluster as implied in

microcalcification clustering. It is based on two parameters,

MinPts and eps. An eps-neighborhood is defined as the

set Neps(p) = {q ∈ X |d(p,q) 6 eps}. MinPts is the lower

boundary of the number of points in an eps-neighborhood.

DBSCAN starts by randomly selecting a point of the

database. If this point q has less than MinPts points in

its eps-neighborhood, it is marked as noise and another

point is visited. Else, all the density reachable points from

the selected point are retrieved and clustered together. This

process terminates when all points have been examined. The

points that cannot be assigned to a cluster are considered as

noise.

C. Affinity Propagation

Affinity Propagation (AP), introduced by Frey and Dueck

[15], is an unsupervised iterative process of data clustering.

Each iteration consists of a set of two “message” updates.

Availability a(i, j) is sent from point j to point i and

represents point’s j potential of becoming i’s exemplar. On

the other hand, Responsibility r(i, j), which is sent from

point i to point j, is the suitability of point j as i’s exemplar.



A damping factor λ is used for the update of availabilities

and responsibilities so that oscilations are avoided [15]. Once

these values are updated, the exemplars are redefined based

on each point’s availability and responsibility as well as a

predefined preference of choosing this point as an exemplar.

The process terminates when changes in the messages fall

below a threshold for a given number of iterations.

V. EVALUATION MEASURES

Before proceeding to describe the evaluation measures

used in this contribution, some auxiliary notions must be

introduced. Let R be a ROI or cluster considered as ground

truth. Since a subset of the DDSM is used, these ROIs are

provided by physicians. C is a cluster as resulted by the

clustering algorithm. Oi j is the overlap of Ri and C j. A set

of parentheses is used to denote the respective area. E.g. (C j)
is the area of cluster j. Finally, a mammogram is considered

as TP if at least one cluster in the mammogram is annotated

as TP.

A. Standardized Evaluation Rule (SER)

This is one of the most common rules of identifying

a cluster as an actual microcalcification cluster (TP). As

mentioned in [16], “A group of detected signals is considered

a TP cluster if a specified minimum number of the signals is

found inside the area containing the true cluster”. The usual

choice for this minimum number of signals, e.g. probable

microcalcifications, ranges from 1 to 5. In this contribution

a cluster is considered as a TP cluster if at least 3 probable

microcalcifications are located in Oi j.

B. Window Coverage

Window Coverage (WC) is the ratio of the area of the

intersection between the ROI as denoted by the physician

and the cluster resulted by the algorithm over the area of the

aforementioned cluster. If a cluster has WC more than 0.5,

then the cluster is denoted as True Positive (TP), otherwise

it is denoted as False Positive (FP). A cluster with WC value

more that 0.5 is a cluster with more that 50% of its area

inside the ROI denoted by the physician.

This can be summarized in the following expression:

ImageClassi f ication =











T P, if max
i=1,...,m
j=1,...,n

{

(Oi j)

(C j)

}

> 0.5

FP, otherwise
(1)

where n is the number of clusters in a mammogram and m

is the number of ROIs (or ground truth clusters) in the given

mammogram.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Every algorithm ran on the images of the training sets in

order to determine its parameters that maximize its perfor-

mance given the evaluation described in Section V. Once

these parameters where determined, the algorithms where

applied on the test sets for their final evaluation. Since the

algorithms showed an increased performance for the p50,

p60 and p70 configurations, p40, p80 and p90 where not

used for testing.

AP ran on every image of the train dataset, given a

specific set of parameters. Specifically, the algorithm ran for

a maximum of 1000 iterations and λ = 0.9. The exemplars’

preference is based on the distribution of the similarity

matrix. A set of runs was executed for a quantile with thresh-

old q of the preference, where 0.1, . . . ,0.9 quantiles where

used. The highest performance in training was achieved for

q = 0.7,0.8 and 0.9. Therefore, these values where used for

testing.

DBSCAN ran for every image in each train dataset, with

MinPts = 1,2, . . . ,20 and E ps = 20,30, . . . ,150. Yet DB-

SCAN did not provide clusters for a number of combinations

of parameter values. For IUC, DE’s parameters as well as

secondary IUC parameters where configured through the

training phase. Therefore, population size was set to 1000

and epochs to 100, while the weighting factor and crossover

constant where 0.6 and 0.8 respectively. α values where

limited to {50,60, . . . ,250}.

B. Results

In table II the number of clusters found by the respective

algorithms is summarized. AP for q = 0.7 had the lowest

number of clusters. Since a mammogram rarely has many

clusters, a small number of clusters ensures less false positive

findings, while at the same time provides a more balanced

dataset for cluster classification since it does not contain

many false positives. DBSCAN achieves its values for radii

(E ps values) of 140 for p50 and p70 and 150 for p60 and

MinPts values of 7 and 8.

In table III True Positive ratios are given based on SER

and WC respectively. Ratios are evaluated on the number

of converged images. As expected, the values for SER are

higher as for WC, since SER enhances the performance of

the algorithms [16]. AP’s best values for WC is achieved

for 0.9 regardless of the test set’s p-value, while for SER,

AP performance with q = 0.9 was slightly inferior than

with q values 0.7 and 0.8. DBSCAN provided its best

results for E ps = 150 and MinPts = 1 for p70, while E ps ∈
{110,120, . . . ,150} combined with MinPts ∈ {1,2} provided

similar or equal to the best result for p50 and p60. Finally,

IUC performed best when α ∈ {200, . . . ,250}.

The results of the conducted experiments can be sum-

marized in the following comments. AP clusters candidate

microcalcifications in a mammogram consistently better than

DBSCAN and IUC. Although DBSCAN can achieve un-

der circumstances comparable results to those of AP, IUC

lacks significantly in performance. AP’s major drawback

in comparison to DBSCAN and IUC is that AP clusters

all candidate microcalcifications depicted in a mammogram.

This contradicts with the observation that many of the can-

didate microcalcifications represent noise instead of actual

microcalcifications. In addition, the entire mammography is

segmented in regions to be considered for further investiga-

tion by radiologists. Noise can be left unclustered and be



Dataset AP DBSCAN IUC

p50
min 6 0 1

mean 22.01 2 3.313
std 7.4655 0 1.542

max 48 2 10

p60
min 4 0 1

mean 14.13 2 2.86
std 5.3064 0 1.133

max 31 2 7

p70
min 4 0 1

mean 9.46 2 2.28
std 3.1008 0 0.5727

max 17 2 5

TABLE II

NUMBER OF CLUSTERS

Dataset AP DBSCAN IUC

p50

SER 159 147 93
(%) (91.379%) (84.483%) (53.45%)
WC 156 140 70
(%) (89.655%) (80.46%) (40.23%)

p60

SER 120 101 62
(%) (80.537%) (68.707%) (44.3%)
WC 115 97 57
(%) (77.181%) (65.986%) (42.3%)

p70

SER 71 56 44
(%) (55.906%) (44.444%) (34.65%)
WC 68 54 38
(%) (53.543%) (42.857%) (29.92%)

TABLE III

TP IMAGES BASED ON WINDOW COVERAGE (WC – RULE 1) AS WELL

AS SER.

removed from further consideration by using DBSCAN or

IUC. Furthermore, AP results in a large number of clusters

per image, while the number of clusters resulted by using

DBSCAN varies depending on it’s parameters values. IUC

managed to locate at least one cluster in each image and

overall managed to provide a low number of clusters, while

providing a relatively constant performance.

VII. CONCLUSIONS AND FUTURE WORKS

This contribution focuses on clustering microcalcifications

in a mammogram with more sophisticated methods beside

trivial clustering rules as is accustomed. More precisely,

AP is a state of the art distance-based clustering algorithm,

DBSCAN is a well known density-based algorithm and IUC

is an emerging evolutionary clustering algorithm addressing

both issues arising in using evolutionary computation to

cluster a dataset.

The results from the experiments conducted show that

clustering microcalcifications to capture ROIs in the DDSM

mammography database is still a open problem due to the rel-

atively low number of images where ROIs where successfully

identified. Therefore, clustering microcalcifications in the

context of this work, is a problem still to be addressed. Evo-

lutionary Clustering has proven its performance in various

applications. The results of these contribution indicate that

in this application, there is still much room for improvement.

The modification of these algorithms will be addressed so

that clustering may increase its performance in the context

of the problem at hand.

More importantly, it must be investigated whether such

clustering results are enough to increase the performance of

a CADe system. In order to answer this question, a classifier

must be trained by using the results of a clustering process

and compared with a classifier trained on a training set

created by conventional clustering rules.
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