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Abstract— The aim of this study was the development of a
simulator for Multispectral Optoacoustic Tomography (MSOT).
The modelling pathway of the simulator was separated into the
optical, the acoustic and the reconstruction part in generating
finally a photoacoustic image. In this paper, the presented
simulation geometry was based on a recently developed MSOT
imaging system, but it can be easily modified to other imaging
geometries. Through comparison between experimental and
simulated data, a validation of the model as well as its
limitations, perspectives and modifications are presented.

I. INTRODUCTION

Photoacoustic (referred also as optoacoustic) imaging of
biological tissues has a rapid growth of development in the
last decade, mainly for resolving contrast of highly absorbing
tissue components or contrast agents [1]-[5]. This technique
is based on the photoacoustic phenomenon, i.e. the produc-
tion of broadband ultrasonic waves via thermoelastic expan-
sion caused by absorption of pulsed laser light irradiation.
An improved approach of this technique, the Multispectral
Optoacoustic Tomography [6], provides enhanced functional
and molecular imaging capabilities demonstrated in a number
of biomedical applications [7],[8].

The different proposed optoacoustic imaging modalities
vary in performance and detectability characteristics, as well
as in the reconstructed optoacoustic image. They can be
also influenced by a number of factors including the tissue
composition and its optical, thermal and acoustic properties,
the light source and the ultrasound detector characteristics
and their position to the imaging geometry. Also, an impor-
tant role to the imaging formation plays the selected image
reconstruction algorithm.

Simulation of MSOT can provide an accurate estimation of
the contribution of these parameters in the final reconstructed
optoacoustic image, acting also as a tool to optimize the
whole imaging chain [11]. As mentioned before, an MSOT
image is the result of the combination of certain optical
and acoustic phenomena. Monte Carlo (MC) methods have
been characterized as the ”gold standard” [12] in modelling
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the photon propagation inside human tissue. MC methods
are often compared with finite-element (FE) methods [16]
and are preferred when diffusion approximation becomes
invalid. The main disadvantages against the FE methods are
the disability of handling more complex media with curved
boundaries and the need in computational resources. The
development and adaptation of Graphical Processing Units in
MC implementations [13] try to overcome these limitations.
Similar approaches for other biomedical imaging modalities
have been presented in the past [14]. The contribution of
this work is the design and implementation of a simulator
for MSOT, as well as combining MC and FE methods for
the simulation of light propagation and their aspects through
a validation with an experimental MSOT system.

II. MATERIALS AND METHODS

A. The Model

The development of an MSOT simulator includes the
optical and the acoustic forward problem formulation. Finally
an image reconstruction algorithm is performed to convert
the simulated acoustic data to an image. Fig. 1 illustrates the
steps of modelling an MSOT simulator.

1) Imaging Geometry: The geometry of the present model
is depicted in Fig. 2. and is modelled in an appropriate
way for small animal imaging dimensions. The detector was
comprised of 64 equidistant elements, covering an angle of
1720 and was cylindrically focused on the plane of imaged
object. The focal distance between the center of the detector
and the phantom’s center was 4cm.

Fig. 1: Flowchart of the development of an MSOT simulator
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Fig. 2: Schematic of Simulation Geometry in 2D.

Also, for light source, a laser beam splitted in 10 fiber
bundles was used providing uniform illumination of the im-
aged object. The radius of each fiber bundles’ beam assumed
to be 0.4 cm. These specifications were in agreement with
the real-time MSOT experimental setup, described in detail
in [9],[10].

2) Optics: The first step of the simulation’s path is the
definition of the phantom containing the absorbers (endoge-
nous chromophores or contrast agents) as well as the light
source setup.

The whole modality is submerged in a water bath. For this
purpose, we used a Monte Carlo Model of steady-state light
propagation in multi-layered tissues, named MCML [12], to
describe a water layer and then to obtain the photons fluence
inside this layer. Setting up the simulation, we specified
this layer in a 2D grid in cylindrical coordinates with the
parameters: layer’s thickness, refractive index n, absorption
coefficient µa, scattering coefficient µs and anisotropy factor
g.

Due to the fact that the photon fluence’s output of the
MCML is based on a pencil beam, the fluence was convolved
[15] with a beam with Gaussian profile and radius such
that mentioned before. From this simulation, we used the
fluence inside this water layer and obtained its value at the
boundaries of the imaged phantom by rotating the phantom in
10 different angles, covering 3600. The final light distribution
at the boundaries was the summation of these 10 fluences.
With this way, we approximated the 10 fiber bundles of the
experimental laser setup, providing an homogeneous light
source.

The uniform illumination at the boundaries of the imaged
object was used as an input to a 2D-finite element method
[16] for the computation of the light propagation inside the
medium under the diffusion approximation. The result was
the light’s fluence, F, through the illuminated phantom.

Finishing the modelling of the optical path of optoacoustic
tomography, the absorbed energy density H was calculated
as the product of the absorption coefficient of the phantom
(Fig. 3b) and its fluence (Fig. 3c):

H = µα F (1)

3) Acoustics: Finally, connecting the optical path with
the acoustic, the initial acoustic pressure distribution was
calculated as the product of the absorbed energy density H
and a thermodynamic quantity, the Grüneisen coefficient, Γ.

p = ΓH (2)

The Grüneisen coefficient is dimensionless and assumed
equal with 0.11 for water at room temperature.

For the optoacoustic signal propagation and detection we
used an open source acoustics toolbox for MATLAB R©,
named k-wave [17]. For the ultrasonic wave propagation in
a homogeneous fluid medium, k-wave solves a coupled first-
order system of equations:

∂u
∂ t

=− 1
ρ0

∇p, (3)
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p = c2
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where u is the acoustic particle velocity, p is the acoustic
pressure, ρ is the acoustic density, ρ0 is the ambient density,
and c0 is the isentropic sound speed. These equations are
related to the momentum conservation (3), mass conservation
(4) and pressure-density relation (5) respectively and assume
that the background medium is isotropic. Their combination
results in the common second-order wave equation:

∇
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0

∂ 2 p
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For the recording of the propagated ultrasonic waves,
a detector with its specifications mentioned in previous
part was designed in k-wave in 2D. The sound speed of
the imaged medium was assumed constant and equal with
c0 = 1535m/s, comprising a value for a tissue-mimicking
phantom.

4) Image Reconstruction: As a final step, the recorded
pressure time series were reconstructed with a linear model-
based inversion [18], in order to obtain the photoacoustic
image. Model-based tomographic reconstruction is based on
a explicit discrete relation between the simulated projections
and the phantom. It can be written in matrix form as:

p = Mz, (7)

where p = [p1, p2, . . . , pN ]
T represents the acquired data, z =

[z1,z2, . . . ,zM]T is the image values over a predetermined grid
and M is the NxM model-matrix. The model-matrix does not
depend on the imaged object and is generated for a given
MSOT system and its specific acquisition geometry and also
its image grid.

The inversion of (7) performed with least-square error
minimization:

zsol = argmin
z
‖p−Mz‖2, (8)



where ‖ · ‖ is a l2 norm and solved using the LSQR [19]
algorithm with Tikhonov regularization. A detailed explana-
tion of this image reconstruction methodology is presented
in [18].

B. Validation

In order to validate the simulation model, we used recon-
structed optoacoustic images of an experimental phantom
as a reference to design a phantom for the input to the
simulation path.

1) Experimental Setup: A cylindrical phantom consisted
of a solution of water, agar and intralipid 1% was used,
including three different absorbers (ink) in three differ-
ent areas. The absorption values were measured using a
photospectrometer as 0.23,0.69,0.46cm−1 respectively. The
diameter of the experimental phantom was 1.9cm and the
excitation wavelength of the laser was determined at 740nm.

2) Simulation Setup: A simulated phantom was created
in agreement with the absorption coefficients of the experi-
mental phantom and the position of the absorbers. The ab-
sorption was assumed homogeneous in each absorber and the
reduced scattering coefficient was assumed constant through
the phantom and equal with µ ′s = 10cm−1. The absorption
coefficient value for the specific wavelength for the optical
pathway, was obtained from [20]. The scattering coefficient
and the anisotropy factor values were determined to obtain
the predefined reduced scattering coefficient µ ′s, according to
µ ′s = µs(1−g).

III. RESULTS

Fig. 3a depicts the photon’s fluence for a laser beam
with Gaussian profile and diameter 0.8 cm. The absorption
coefficient map of the imaged phantom is illustrated in Fig.
3b.

Fig. 3c illustrates the solution of the Finite Element
Method of the homogeneous light distribution inside the
phantom provided from multiple angle illumination.

The initial acoustic pressure distribution used as an input
into the k-wave toolbox is depicted in Fig. 3d.

Fig. 4a and Fig. 4b present the reconstructed image from
experimental and simulated data respectively, both obtained
with the same image reconstruction algorithm. Fig. 4c shows
a validation profile plot from the horizontal cross sections
between experimental and simulated reconstructed images
respectively.

IV. CONCLUSIONS AND DISCUSSION

We have developed and presented a simulator for multi-
spectral optoacoustic tomography capable to generate MSOT
images. In the first effort for validation the generated images
are in agreement with the experimental ones although the
absorption coefficient between the absorbing circular regions
and the background was less than one order of magnitude.

Simulating the optical and acoustic phenomena in concert
facilitates the direct and easy comparison with experimental
data, providing better understanding of optical (light fluence)

(a) (b)

(c) (d)

Fig. 3: a) Photons fluence over a laser with Gaussian beam
(log. scale), b) Phantom’s absorption coefficients, c) Light’s
fluence distribution and d) Initial pressure distribution.

(a) (b)

(c)

Fig. 4: Reconstructed a) experimental (solid line) and c)
simulated (dashed line) image in arbitrary units after normal-
ization with their horizontal cross sections c) respectively.



and acoustic (ultrasound dispersion and scattering) phenom-
ena that are present in experimental tissue imaging.

Despite the fact that the basic phenomena are taken into
account, a number of additional system features, i.e. the sen-
sitivity field and spatial impulse response of the ultrasound
sensors can largely affect the image intensity in different
areas making the simulations deviate from experimental
reality.

Our future work will include optimizations in the pre-
sented 2D model as well as its expansion in the full 3D space
including a number of such additional system features. Also,
in-silico experimentations concerning image acquisition with
different geometries will be performed to exploit the capa-
bilities of the simulator.
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