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Abstract— Computer aided diagnosis in cancer pathology
(computational pathology) using histological images of biopsies
is an emerging field. Segmentation of cell nuclei can be an
important step in such image processing pipelines. Although
seeded watershed segmentation is a simple and computationally
efficient segmentation technique, it is prone to errors like over-
segmentation when applied to histological images. We report
specific enhancements to this technique to improve segmen-
tation of cell nuclei in histological images. Foreground seeds
were generated by fast radial symmetry transform (FRST).
Otsu thresholding was used on enhanced image to estimate
tentative foreground map. Background markers were computed
from the tentative foreground map. False detections in the
segmented output were removed by logical AND with the
tentative foreground map. Using these enhancements nuclear
segmentation was significantly improved on histological images
(H&E stained breast and intestinal tissue images, Feulgen
stained images of prostate tissues).
Keywords: seeded watershed segmentation, histological images,
segmentation of cell nuclei.

I. INTRODUCTION

Cancer is a major health problem in many parts of the
world [8]. The breast, prostate, lung, and colorectal cancer
are the leading types in number of estimated new cases and
deaths. A key to reduce the mortality rate in cancer is early
detection. Ideally, diagnosis should have no false positives
nor false negatives. Biopsy, which involves extracting cells
from the suspected tissue and examining them under a
microscope, is one of the most accurate but invasive diagno-
sis technique. Computationally-assisted diagnosis based on
biopsies is an emerging research field. It has the potential
to relate previously unsuspected visual features to clinical
diagnosis and future outcome as shown by a recent study
[1].

Segmentation of objects from an image or video is an im-
portant and first step for further computational interpretation.
It is a process of multi-object (nuclei) extraction from the
background (cytoplasm and stroma). In histological images,
the objects of interest are nuclei. Diagnosis related features
like mitotic count, nucleopleomorphism etc. can be extracted
from segmented nuclei. Segmentation of cell nuclei is a
challenging problem due to wide size and shape variations
of the nuclei [4], complex heterogeneity within nucleus and
in stroma, improper staining, imaging artifacts, variation in
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density of the nuclei in an image and across different images,
and the occluded nuclei.

Nuclear segmentation has been approached by using
classical image segmentation methods such as threshold-
ing, region based approaches (like region growing), energy
minimization techniques (like snake model, active contour
level sets), and the classification based segmentation [2]. A
machine learning based framework was used by A. Veillard
et.al [9] to find the probability map of pixels belonging to the
nuclei. Linear discriminant analysis (LDA) was performed on
Law’s texture measure (180 dimensional feature space) for
optimizing inter- to intra-scatter ratio and it was followed
by an application of softmax function to map it to the
probability. This method is not generalizable across different
histological image types in the sense that different classifier
hypothesis are required for the different training image types.
Also, the labeled image data is generated by the manual
nuclei annotations. Assuming a set of hypothesis for different
training sets, we need to decide on a hypothesis for the test
image from this set of hypothesis. In general, machine learn-
ing methods degrade in performance if sufficient training
examples are not used.

After a survey on cell segmentation, E. Bengtsson pro-
posed a comparatively robust and an upgraded seeded wa-
tershed model [2]. Here, the seeds are generated by H-
maxima transform of the distance transform of the back-
ground map. However, the parameters are manually tuned.
They reported that use of intensity, gradient, connectivity,
and shape information in the watershed model leads to
robust segmentation methods. Another work by P. Shete [7]
in avoiding over-segmentation used transformation of more
than one markers to one per nucleus. However, this method
is very specific due to use of color thresholding and is
prone to errors by removing wrong markers. An analysis
of past five decades of research on cell segmentation by
Erik [6] reported that cell segmentation approaches so far
are combinations of discussed or basic approaches tailored
to a specific application. They are biased to application at
hand.

A recent work on nuclear segmentation by M.Veta et.al
[10] proposed an unsupervised segmentation in which marker
controlled watershed transform is seeded with new fore-
ground marking scheme based on fast radial symmetry
transform (FRST) [5]. They reported improved results than
regional minima marking scheme that is popular in watershed
segmentation. Here, the post-processing includes solidity
rejection, small and big sized region removal for the further
improvement in the segmentation accuracy. The same frame-
work is reflected in the work by Huang and Lai [3] with some
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difference in the marking scheme. It uses a regional minima
based foreground markers. This marking scheme works well
with a simple tissue structure but creates problems with
more complex tissue appearance and with the densely packed
nuclei.

Thus, most of literature on nuclear segmentation fits the
model to a specific application. Hence, there is a need of a
powerful generalizable segmentation algorithm. A generaliz-
able algorithm is such that it is applicable for a wide range
of applications (different types of microscopic/histological
stained images), while achieving high sensitivity and speci-
ficity. Over-segmentation is a central problem in watershed
segmentation. For solving this problem and move to generic
segmentation, our technique incorporates the following: 1.
Gaussian smoothing for high frequency noise removal and
blurred nuclei segmentation 2. Proposed background markers
based on image information to reduce over-segmentation 3.
Tentative foreground map for removing false detections.

(a) (b)

(c) (d)

Fig. 1. Segmentation challenges: (a) Large sized nucleus, (b) Very blurred
nuclei, (c) and (d) Rough nuclei boundaries, size and shape variations

II. IMAGE DATABASE AND CHALLENGES

We tested the proposed algorithm on three histological
image data sets: 50 H&E (hematoxylin & eosin) stained
breast (MITOS dataset), 65 H&E stained gastrointestinal,
and 4 Feulgen stained prostate histological images. See
acknowledgment. In H&E stain, the hematoxylin binds the
nuclear DNA to render blue color and eosin binds the
cytoplasm, other structures to give pink color. In case of
Feulgen stained images, nuclei are perceived to be blue color
structures while the background (cytoplasm) is white. The
staining process increases the contrast between the nuclei and
background (cytoplasm and other structures), thus helping
the visual inspection.

Some of the challenges mentioned in the second paragraph
of the introduction section can be seen in Fig.1. There
are appearance variations across different regions in whole
slide image and across different patient slides. Hence, it
is necessary to use local adaptive enhancement techniques
like local histogram equalization, adaptive thresholding etc.
Occluded nuclei pose the problem of under-segmentation.
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Fig. 2. Flow diagram for the improved seeded watershed segmentation.
Italic texts are our improvements to seeded watershed segmentation.

III. PROPOSED ALGORITHM

A flow diagram for modified seeded watershed algorithm
is shown in Fig.2. It shows improved performance with
respect to over-segmentation, maximal nuclei segmentation,
smooth boundary preservation, and false detections. This
improved performance is due to inclusion of following
stages: Gaussian smoothing for enhancement with its implicit
advantages, an image driven background markers, and Otsu
thresholding based tentative foreground estimation. In this
section we describe the enhancements to the seeded water-
shed algorithm and their rationale in more detail. Typical
parameter values used are given in Table I.

A. Channel selection and pre-processing

In both H&E and Feulgen stained images, R channel was
used because it shows significant contrast between nuclei and
background. The preprocessing was for the high frequency
noise removal using Gaussian smoothing. It enhances the
segmentation of diverse and poorly stained nuclei. The
parameter (σ) of Gaussian kernel was kept low in order not
to miss small sized nuclei.

B. Image enhancement

Morphological filtering (opening followed closing by re-
construction) was introduced as an image enhancement step
to further smoothen the high intensity background (mainly,
cytoplasm) and the low intensity foreground (mainly, nuclei),
while preserving the structural or edge information. A high



degree of background smoothing is required on the MITOS
dataset, so the opening operation was performed with a large
sized structuring element (SE). Therefore, morphological
filtering parameters for MITOS dataset are chosen to be
(30,5) as shown in table 1. As the segmentation is a function
of the gradient magnitude of the image, the enhancement
parameters affect the performance of the segmentation. It
is found that best enhancement parameters are different for
differently stained histological images.

TABLE I
TYPICAL PARAMETER VALUES USED

Processing stage Parameters Value in pixels

Gaussian smoothing Variance, σ 3
Window size 10

Morphological filtering

Opening by reconstruction 30disk SE size
Closing by reconstruction 5disk SE size

FRST Set of radii 5,7,9,11,13,15
Strictness of symmetry, α 2.0 (unitless)

Non-max suppression Window size 30
Looping window size 40

BM from FM Dilation disk size 20
Image driven BM Dilation disk size 7

C. Foreground and background marking

Assuming radial symmetry around the nuclei we detected
foreground markers as local maximas of FRST of the en-
hanced image using a sparse set of radii (5,7,9,11,13,15)
that were manually selected to be close to the size of the
nuclei. Spurious multiple maximas were removed using non-
maximum suppression parameterized by a square window of
size 30 that accommodated most of the nuclei. To remove
multiple maximas from asymmetrical and large size nuclei
(like Fig.1(a)), a loop was run for cascaded non-maximal
suppression with square mask of size 40, which converged
when there was no change in the current and previous marker
image.

The background markers (BMs) can be easily generated
from foreground markers (FMs) obtained by applying FRST.
However, the nuclei in histological images are neither truly
circular in shape nor symmetrical. Even after repeated non-
maximal suppression, some nuclei may have more than
one marker. Thus, if we use those FMs to estimate BMs,
there is possibility of artifacts such as over-segmentation, an
incomplete nuclei detection, and false negatives. We added
an image driven background marking scheme to avoid the
above mentioned artifacts. This scheme employ estimated
foreground map to compute BMs. The foreground map
was a binary image obtained after Otsu threshold based
segmentation of the enhanced image. The skeleton of dilated
and inverted foreground map results in the true BMs. Here,
dilation is done to avoid BMs on nuclei.

D. Segmentation and post-processing

Watershed segmentation was run using FMs and BMs as
local gradient magnitude minima to speed up the algorithm.

Obtained watershed lines represented boundaries of the nu-
clei. In post-processing, false detected regions were removed
by use of tentative foreground map. The regions, separated by
less than two pixels were connected by use of morphological
dilation-erosion with small sized SE. Also, small segmented
regions (less than disk SE of radius equal to three pixels)
were removed.

IV. RESULTS AND DISCUSSIONS
The table I includes list of the parameters with their typical

value used for the experiment. It was found that best setting
for morphological filtering parameters varied by type of
image (different average nuclear size). Gaussian smoothing
is essential pre-processing stage depicted in Fig.3. It shows
that blurred (poorly stained) nuclei are segmented if we
incorporate smoothing before enhancement.

An improvement in the segmentation and the background
marking by use of an image driven background marking
scheme is shown in Fig.4. The FM based background mark-
ing scheme is inaccurate in marking the background and it
increases false negatives unlike image driven BMs. Nuclear
segmentation result by the proposed algorithm on Feulgen
stained image is shown in Fig.5. The prostate tissue Feulgen
stained images have uniform background (cytoplasm and
other structures). Therefore the best setting of morphological
filtering parameters for opening and closing are respectively
20 and 5. Quantitative segmentation results (table 2) were
obtained only on 50 intestinal microscopic images due to
accessibility of ground truth (expert-marked nuclei). Under-
segmentation is moderately high, which shows that occluded
nuclei is an unsolved problem.

TABLE II
PERFORMANCE MEASURES ON INTESTINAL MICROSCOPIC IMAGES

Recall Precision Oversegmentation Undersegmentation
93.33% 90.79% 8.63% 15.49%

(a) (b)

(c) (d)

Fig. 3. Improvement in nuclear segmentation by Gaussian smoothing (a)
R channel of input color image, (b) Segmentation without smoothing, (c)
Smoothed R channel, and (d) Segmentation with smoothing. Blurred nuclei
missed by (b), are retained in (d), as shown by annotations in (d).
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(e) (f) (g) (h)

Fig. 4. Results of the proposed algorithm (a) Input color image, (e) R channel, (b, c, d)- results for background markers obtained from foreground
markers, and (f, g, h)- results for proposed image driven background markers. (b, f) Enhanced image + foreground markers (dots) + background markers
(lines on the background), (b) shows wrong background markers as they cross objects of interest unlike by proposed image driven background marking
shown in (f). (c, g) Seeded watershed segmentation output, (g) shows less false detections, and (d, h) Processed output, between (d) & (h), (d) shows some
nuclei missing unlike by proposed algorithm as shown in (h).

(a) (b)

Fig. 5. Segmentation result on the Feulgen stained image (a) Input Feulgen
stained image, (b) Segmented output.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Seeded watershed scheme is a good choice for the multi-
object segmentation, such as nuclei in histological images,
due to its low computational complexity in comparison
with image energy based models for segmentation. How-
ever, the watershed model is prone to over-segmentation.
We improved its performance for histological images by
introducing specific enhancements, and improved foreground
and background marking. A tentative foreground map was
used to avoid false detections.

The problem of segmenting partially occluded nuclei re-
mains unsolved. Further improvements are required to make
the proposed nuclear segmentation algorithm fully automated
and more robust. For example, one can try using local
or adaptive enhancement techniques and exploring image
dependent marking schemes like the proposed background
marking scheme.
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