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Abstract—The importance of ErbB receptor signaling in 

breast cancer is consistent with its functional role in normal 

development of mammary gland. The study of the ErbB 

signaling network and its bidirectional cross-talk with 

hormonal receptors, such as estrogen receptor (ER) encloses 

information about the molecular mechanisms on breast cancer 

evolution, progression and endocrine resistance. With this 

analysis we attempt to examine the differences in 

activation/inhibition of intracellular signaling molecules within 

ErbB signaling cascade on ER+ and ER- breast cancer patients. 

With the proposed framework we model the genetic 

interactions in the ErbB signaling pathway directly from 

expression data as Gaussian approximations and compare them 

with the KEGG canonical ErbB pathway in order to identify 

significant molecular deformations characterizing the studied 

population. The results indicate a distinct profile of 

activation/inhibition between the two ER populations and 

highlight the primary role of PI3K/Akt pathway in breast 

cancer progression and targeted treatment strategies. 

I. INTRODUCTION 

he ErbB receptor family consists  of four 

transmembrane tyrosine kinases: EGFR/ErbB1/HER1,

ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4. 

It activates numerous key intracellular pathways that govern 

major biological processes including proliferation, cell 

migration, metabolism and survival. ErbB signaling is 

stimulated by the epidermal growth factor (EGF) family of 

peptides, members of which are receptor specific. The ability 

of ErbB receptors to regulate crucial intracellular pathways 

is due to their aptitude for interaction with many signal 

transducers [1]. In addition, their differentiation in 

expression between breast cancer populations suggests 

numerous novel ways of interaction. This implies many 

different states in the ErbB pathway’s genetic expression 

among the subjects, whose decoding would give insight in 

their oncogenic potential, but also highlight their utility as 

therapeutic targets.  
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A variety of computational methods have been considered 

for modeling genetic regulations in pathways, such as linear 

models [2] and Gaussian networks [3] that aim to provide 

suitable mathematical models for describing stochastic 

associations and dependence structures in complex high-

dimensional data. Although graphical models are promising 

for regulation analysis, their main drawback is their limited 

performance when the experimental data is insufficient. In 

addition, the simplicity of modeling complex dependencies 

between molecules introduces high uncertainty. Thus, there 

is an imperative need to develop robust methods with 

validated performance to real genomic applications. 

In this study we focus on a signal transduction network, 

the ErbB receptor signaling, which is dysregulated in many 

cancers including breast cancer. This signaling network 

reveals the biological sequence of molecular events in 

normal cellular conditions. Instead, we use the experimental 

gene expression data from ER+ and ER- subjects to model 

the activations/inhibitions of the implicated ErbB signaling 

molecules and compare the resulting network with the actual 

ErbB pathway as expressed on normal subjects. The purpose 

of this comparison is twofold; first to study the ability of the 

experimental model to express sound biological relations as 

in the ErbB pathway and second, to examine differences in 

molecular signaling and inconsistencies between the two 

populations, which might be relevant to the progression of 

the cancer pathology. In addition, we consider the response 

of the involved molecules upon activation by EGF, in an 

attempt to examine the ability of the proposed framework to 

predict the response to such molecular deficiencies. Our 

proposed framework represents nonlinear relations between 

genes and relies on Gaussian modeling through Kernel 

density estimation (KDE). We apply this framework on data 

from breast cancer and focus on the ErbB pathway. The 

results indicate the important role of the intracellular 

pathway PI3K/Akt of ErbB signaling, responsible for cancer 

evolution and progression. 

II. METHODOLOGY

This study attempts to identify which molecules are 

activated/inhibited in a signaling pathway, based on 

thresholds T. A gene is considered inhibited if the 

probability of expression           is lower than 0.5 (section 

II.B). In contrast, activation probabilities are considered

higher than 0.5 for     . In this way, we can estimate the 

genetic expression profile for all genes in the pathway based 
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on the available expression data. In the same context, we can 

predict the impact of involved genes in the entire pathway. 

We pose inference queries conditioned on the observation of 

a specific gene that play an important role. An example is 

illustrated in Fig.1, where we compute the probabilities of 

activation/inhibition for the involved genes in the PI3K/Akt 

pathway given that GAB1 was found inhibited. 

A. Kernel Density Estimation 

In previous studies [4], we focused on approaches for 

estimating the structure of a gene-gene network. Based on 

the KDE approach, we now estimate the network structure 

using only expression data. After this design step, we 

examine the modeling of the inter-genetic dependencies 

using a non-linear analysis. 

Kernel density estimation [5] is a non-parametric 

framework that estimates the probability density function 

(pdf) of a random variable. Assume that a generic network is 

developed based on a limited genomic i.i.d dataset 

X=(x1,..xn),where xi denotes the sample i of gene X. The 

KDE allows the estimation of X as follows: 
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where K(.) is a symmetric positive definite Gaussian 

function  (u) 
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, n is  dataset’s size of the gene X and 

            is the optimal Gaussian bandwidth parameter, 

with   standard sample deviation. 

B. Conditional Probability Distribution  

Gaussian graphical models (GGMs) are forms of 

graphical models for representing complex associations 

among Gaussian random variables. A gene corresponds to a 

random variable, while gene interactions are shown by 

edges. Thus, interactions with parental nodes are modeled by 

the conditional probability distribution (CPD) of each gene. 

We use KDE as a non-parametric framework in order to 

capture the dependencies from parental nodes that underlie 

on experimental data. 

Suppose we have p sets of microarrays and n genes where 

              
 
is a p dimensional expression vector obtained 

for  ith gene. Let Pai be the parents of gene    then direct 

dependencies are encoded according to a conditional 

probability. In order to model these dependencies, we find 

the joint distributions with Standard Gaussian Kernel (SGK) 

as follows: 
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where K(.) is a Gaussian kernel function described as (1), p  

is dataset’s size and       
-   ,       

-    for         are the 
smoothing parameters selected as optimal approximations of 
Gaussians basis functions [5], [6]. 

Equation (2) implies that the conditional density estimate 

is an asymptotic approximation of Gaussian [5], [6]  (     
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Hence, (3) and (4) encode a Gaussian model that captures 

non-linear dependencies of network parameters. If a gene 

has no parents its mean and variance are taken from KDE.  

C. G   s’   r s ol s a   I t ra t o s  

In order to establish a mathematical base of gene’s 

interactions (activation/ inhibition), we have to (i) establish a 

robust threshold for gene expressions and (ii) define simple 

rules which can map the gene associations into interactions.   

The threshold on gene expression follows a two-interval 

discretization of expression patterns which is based on an 

information-theoretic setting as follows [7]. For each gene 

we sort the expression values in descending order in the 

form V = n1 , n2     i where n1 < n2 < … < ni.. For all 

consecutive pairs in V, the midpoints are computed. For each 

midpoint   , two subsets of V are formed, i.e. 

    *              + for high or up regulated class and 

    *              + for low or down regulated class. 

Then, the information-gain in [8] is utilized and computed 

as   (  )  ( ) -  (    ), where E(V) stands for the 

entropy of the system and  (    ) for the entropy of the 

system when the set V is split into the disjoint sets Hk and Lk. 

The latter term is obtained from the absolute entropy 

subtraction of class Hk from Lk [9]. The midpoint that 

exhibits the maximum information-gain is selected as the 

threshold that best splits the expressions in V and best 

expresses the regulation of the studied gene. 

Thresholds on expression levels also give us the ability to 

characterize the identified gene interactions. In the gene-

interaction network, genes are represented as nodes and 

interactions as edges. An edge is considered to be activation  

 
Fig. 1.  An example of the proposed methodology for the PI3K/Akt 
sub-pathway. Given that GAB1 is inhibited, we predict the impact of 

its inhibition on the other molecules. For each gene we compute T 

considering as inhibition probability p>0.5 in the range           and 

as activation p>0.5 for e>T. 



  

 

only if both the source and the target nodes (genes) are over-

expressed. An edge is considered to be inhibition if the 

source node is over-expressed and the target node is under-

expressed or if the source is under-expressed and the target 

is over-expressed.  

III. RESULTS 

The basic purpose of the experimental study is to select a 

central molecule in the pathway, whose expression is known 

to affect the involved genes in the same pathway. Our goal is 

to predict which genes appear to be expressed (activated) or 

under-expressed (inhibited) following the activation of the 

central molecule and verify the  predicted profiles according 

to previous studies. 

A. Dataset 

Most of breast cancer (BC) cases are influenced by both 

estrogen receptor (ER) and growth factor receptor signaling [9]. 

In an effort to reveal the underlying mechanisms we used 

three independent gene-expression studies targeting the ER 

phenotypic status of the respective patients, i.e., ER+ (ER 

positive) vs. ER- (ER negative). The details of the gene-

expression data from the three studies are as follows: 

GSE2990 with 183 patients; GSE3494 with 247 patients; 

and GSE7390 involving 198 patients [10]. We studied two 

pathways, the ErbB signaling and the mTOR, considering 

121 genes, which also include closely related genes or genes 

encoding protein family members and protein isoforms.  

B. Implications of Activation/Inhibition 

We focus on the expression profile prediction for the 121 

studied molecules. For each gene we compute the 

appropriate threshold T and consider expressions higher than 

T as activation. More specifically, the information of genetic 

expression is enclosed in a Gaussian CPD, according to our 

methodology. Hence, we establish the genetic expression 

profile for all genes in the pathway based on the available 

expression data.  In addition, we can predict the impact of 

specific genes in the pathway, by posing inference queries 

conditioned on the observation of the specific gene. For 

instance, the probability of gene ERBB2 to be inhibited when 

EGF is activated is summarized as the conditional 

probability of the former given the expression level of the 

latter gene.  

For the 121 studied genes we isolated the EGF, for which 

we predict its influence in the ErbB signaling pathway for 

the ER+ and ER- networks. It is well-known that EGF binds 

specifically to EGFR and its expression in breast carcinomas 

was associated with tumor size [11]. Our goal is to identify 

differences between the ER+ and ER- networks.  

 Table I presents the predicted expression levels based on 

(i) the expression data  and (ii) the effects upon activation by 

EGF, in ER+ and ER- networks.  Key points of interest are:  

 There is a distinct gene expression profile for activation 

and/or inhibition in both ER+ and ER-.  

 The observation of activated genes in ER-, which at the 

same time are inhibited in ER+ and vice versa, highlights 

TABLE I.  EFFECT OF EGF ACTIVATION ON A SUB NETWORK PORTION OF THE ErbB SIGNALING PATHWAY 

 
The first column shows the predicted activated/inhibited ErbB receptors; the second column presents the predicted activated and inhibited molecules of 
intracellular pathways of ErbB signaling network;  the third column shows the activated and inhibited PI3K/Akt downstream effectors in A) ER+ and ER- 

networks, B) in the ER+ network, and C) in the ER- network. Activated molecules upon activation by EGF are in bold; there are not inhibited molecules 

upon activation by EGF in both ER+ and ER- populations. Activation is denoted by the upwards arrow  ↑ . 

 



  

molecules with inverse properties in the ER populations.  

 Upon activation by EGF, different ErbB receptor family 

members, signal transmitters and downstream effectors of 

ErbB intracellular cascades are activated in both ER+ and 

ER- (EGFR, SRC, STAT5A, STAT5B) or activated in ER- 

and inhibited in ER+ (ERBB3, CBL, ABL1, ELK1). 

In general, we observe distinct gene expression profiles 

across the ErbB signaling network in ER populations, which 

is consistent with recent findings [10], [12]. As expected, the 

major signaling pathways activated by ErbB receptors are 

mediated by PI3 kinase, Ras-Raf (MAPK), JNK, PLCγ and 

facilitate a multiplicity of cellular functions [13]. 

Nevertheless, as illustrated in Table I the intracellular 

signaling cascades of ErbB network are preferentially 
implemented via specific, closely related human genes (RAS 

genes), or encoded protein family members (Crk) and 

isoforms (Akt), or different effector molecules (STAT, Myc, 

Elk) in each ER subtype. Numerous studies have 

demonstrated that the ErbB signaling network, including the 

intracellular pathways such as PI3K/Akt pathway are 

activated in BC. Moreover, the influence of PI3Ks proteins 

in oncogenesis has been validated by several studies 

indicating that aberrations in this pathway are potential 

causes of cell transformation and, more significant, that 

PI3K pathway inhibition causes tumor regression. By 

restricting our discussion to the PI3K/Akt pathway, we 

observed distinct activation and inhibition profiles of 

ER+/ER- subtypes. Given that PI3K/Akt drives 

proliferation, as well as tumor cell survival, it is likely 

expected that tumor cells attempt to maintain constitutive 
activation of this pathway [13], [14]. This is also observed in 

our study with the appearance of distinct activation profiles 

based on gene expression data and upon activation by EGF 

(Table I). As reported recently in [14], each molecular 

aberration may have a different clinical impact depending on 

the breast cancer molecular background, the presence of 

other aberrations, and/or the treatment received.  

Furthermore, the proposed framework provides a useful 

tool for the discovery of activated or inhibited molecules that 

may reveal novel mechanisms of PI3K pathway-activation in 

BC subtypes. A bidirectional cross talk, where the PI3K 

pathway affects the levels and activity of ER, and the 

endogenous membrane ER can stimulate growth factor 

receptors and PI3K/Akt pathway [9], [14], indicating the 

significance of the above observations. Recent studies 

provide also evidence that the frequency and type of PI3K 

pathway aberrations vary among the different breast cancer 

subtypes, such ER+/ER- status [14], [12]; thus confirming 

our results.  

Another important aspect of our study is the ability to 

focus to specific down and upstream effectors of the PI3K 

signaling pathway, as they comprise potential targets for 

drug development in BC, by posing specific queries. This 

can come with important therapeutic implications, because 

the differences of genetic expression on ER patients could be 

exploited for the production of individualized medications 

based on the expression profile of the ER patient, as the 

newly developed targeted therapies (AKT inhibitors) [14].  

IV. CONCLUSION 

With this study we examined the sequence of molecular 

events of the ErbB signaling cascades on ER+ and ER- 

subjects and identified their differences in 

activation/inhibition. Upon activation by EGF, apart from 

the common activated or inhibited genes, we observed a 

distinct expression pattern of affected molecules, activated 

on ER+, inhibited on ER- and vice versa. This observation 

could be exploited for therapeutic use for the studied disease 

on the ER+ and ER- patients.  Our study highlights the 

impact of specific molecules (activation/inhibition) through 

the PI3K pathway and more widely of ErbB pathway, and to 

identify key molecules of these aberrant pathways in the 

different subtypes of breast cancer. At a subsequent level, 

the proposed framework may be very useful for targeted 

therapy at different points of the PI3K pathway and the 

entire ErbB signaling network. 
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