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Abstract— The performance of predictive models is crucial in
order to accurately determine peptide binding affinity for major
histocompatibility complex (MHC) alleles. Data sets extracted
to model the relationship between the peptides and their binding
affinities are often high-dimensional, complex and non-linear,
which require highly sophisticated computational predictive
models. Support Vector Machine (SVM)-based predictive meth-
ods have been used for such problems and have been shown to
deal with such high dimensional data, however failed to take
into account of uncertainty that naturally exists in this type
of data. In order to address to the uncertainty issue, Fuzzy
System (FS) has generally been utilised in various applications.
Therefore, a hybrid method that combines FS and SVM is
proposed in this study for the prediction of binding affinity of
peptides in mouse class I MHC alleles. The hybrid system is
successfully applied to two benchmark data sets of class I MHC
peptides, each of which contains over 5000 peptide features.
The assessments yield as much as 17% improvement over the
previous studies that also include SVM-based experiments. The
results also suggest positive impact of the concept of fuzziness
on SVM-based predictive methods when combined and that the
hybrid model can be generalised for similar non-linear system
modelling problems.

I. INTRODUCTION

The T-cell receptor is a molecule, present at the T-cell
surface, and signicantly required to activate the T-cell by
recognising antigenic peptides bound to major histocom-
patibility complex (MHC) molecules translocated on to the
surface of the infected cells [1]. The peptide epitopes that
are bound to MHC class I molecules can be recognised by
the T-cells and can induce the cellular immune response.
As a consequence revealing the association of peptides with
the MHC molecules can be crucial for drug development.
A common assessment to elicit these associations is to find
peptide binding affinity.

Predicting binding affinity using computational methods
is of particular interest in bioinformatics. As there are large
number of peptides, laboratory-based experimental evalua-
tion of binding affinity between proteins and peptides are
costly, expensive and requires labour and resource [2]. There-
fore, as though empirical methods may become inefficient
and unfeasible, there is a need to develop a computational
predictive model that is capable of determining the tendency
and strength of the bindings in order to save time as well
as experimental efforts. Wide range of applications in the
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prediction of peptide binding affinity reported in the liter-
ature including partial least squares [3] and artificial neural
networks [4]. Nevertheless, recent research efforts have been
focused on quantifying the binding predictions [5].

SVM is one of the computational methods that has been
shown to effectively deal with large number of dimensions
[6]. When the quantitative modelling is the case, SVMs can
be extended to SVR with the aid of e-sensitive loss function
[7]. SVR has been proven to lead better generalization ability
and performance in a wide range of applications [5], [8].
Fuzzy systems is another non-linear method that is good at
modelling uncertainty and yielding a set of interpretable if-
then rules [9]. On the contrary, fuzzy systems can suffer from
the curse of dimensionality in high-dimensional systems. A
hybrid learning system is therefore proposed in this paper
to train the parameters of the fuzzy system. The main idea
behind this method is that the linear parameters of the
consequent part of the fuzzy system were obtained by using
SVR whereas the parameters of antecedent part of the fuzzy
system that characterise each fuzzy set were obtained using
the clustering method [10], [11].

SVR-based fuzzy system is generally applied in a data set
with a small number of features due to the nature of fuzzy
system [10]. Our recent attempt has proven its applicability in
relatively large number of features where a peptide binding
affinity problem can be successfully studied. Therefore, in
order to further assess efficiency of the proposed hybrid
method, two mouse class I MHC allele data sets are used
to model their MHC-peptide binding affinity. The predictive
performances are then compared with the recently published
studies. The rest of the paper starts by presenting the char-
acteristics of the MHC class I binding data sets and follows
by describing the support vector-based fuzzy system and the
performance measurements of the prediction models (Section
IT). Experimental results are then provided in Section III, and
finally the conclusions are drawn in Section VI.

II. MATERIALS AND METHODS
A. MHC Class I Binding Data Sets

Proteins degraded into peptides by the proteaosome, and
the generated peptides are translocated to the endoplasmic
reticulum [12]. These translocated peptides are bind to MHC
class I molecules. When the peptides are immunologically
active regions and able to induce cellular immune responses,
they are called T-cell epitopes. T-cell epitopes were translo-
cated on to the surface of the infected cells so that they can be
recognized by a T-cell receptor present at the T-cell surface.
The Cytotoxic T-cells are the immune cells that can recognise



TABLE I
GENERAL CHARACTERISTICS OF THE DATA SETS USED FOR THE
PREDICTION OF PEPTIDE BINDING AFFINITY FOR MOUSE CLASS I MHC

ALLELES
Number of Number of Number of
Data sets|Peptide Sequences | Amino Acids | Peptide Sequence Descriptors
H2-D? 65 9 5787
H2-K? 62 8 5144

antigenic peptides bound to MHC molecules translocated on
to the surface of the infected cells originated from pathogenic
organisms like bacteria, fungi, parasites or viruses [13].

As the number of peptides are very large, experimental
measurement of their binding affinity is difficult, therefore
prediction methods have become increasingly important in
the post-genome era. Such predictions help determine the
accurate binding affinities of these peptides. Peptide data sets
are often high-dimensional (~5000) and complex and consist
of limited number of peptides (~100).

Mouse class I MHC alleles (H2-Db and H2-Kb) were used
in this paper to model their MHC-peptide binding affinities.
The peptides in each allele contain experimentally measured
binding affinities, numerically as pIC50. Each peptide in the
data sets was represented by assigning values of physico-
chemical and bio-chemical descriptors to each amino acid.
There are 643 descriptors (real values) for each amino acid
extracted from the Comparative Evaluation of Prediction
Algorithms (CoEPrA) modelling competition [14]. As shown
in Table I H2-Db consists of nona-peptides that have a
total of 5787 (643x9 = 5787) descriptors and H2-Kb has
octa-peptides that have a total of 5144 (643x8 = 5144)
descriptors.

B. Support Vector Based Fuzzy System

The rule-base of the Takagi, Sugeno and Kang (TSK)
fuzzy system with r rules can be expressed as [15]:

Rl' . IF T1 is Ali AND To is AQi ... AND Tn is Ani
THEN Yi = Coi 4+ c1ix1 + ... F CriTn (1
)

where n are the input variables (x1, o, ..., ,); and A,; is a
fuzzy set for the variable n and rule r, generally represented
by a membership function; and y; is a linear function in the
consequent part; and cg, c1, C2, ..., ¢, are the coefficients of
input parameters. The overall output is obtained by weighted
average and can be calculated as:

y=> T )
=1
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where f; is the firing strength determined by using a t-norm
operator and f; is the normalized firing strength. The t-norm
operation can be defined as:

fi =11 nzy) )
j=1

where p(x;) is the degree of membership for input variable
Zj-

SVM is a statistical learning algorithm that searches for
a hyperplane which separates the given training data set
optimally [6]. Based on the structural risk minimization, this
separating hyperplane will maximize the margin between two
classes. SVMs can be extended to regression using the e-

insensitive loss function. SVR approximates a linear function
h(x):

h(z) = whz +b. (5)

where the coefficients w and b represent the weight vector
of the linear expression. The linear function is constrained
to:

1
min & [lw|® +C Y (64 +£-)- (6)

where £, £~ are the two types of slack variables. The
parameters w and C are regularisation and optimisation
factors, respectively. This expression tolerates up to a value
which deviates greater than e. The minimisation function
defined in Eq.6 is subject to:
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Support vectors are chosen from the certain training in-
stances and the regression is defined by the weighted sum
of the support vectors to adequately model data. TSK is
generally benefited from the least squares estimation [16]
to design the consequent parameters. Instead, the proposed
approach uses the support vector regression concept with
a linear kernel. The inputs (fi, fixi1, fiTiz, ... fiin) for
each data item in the training data set along With its actual
output y are given to SVR to compute the TSK consequent
parameters from the coefficients w and b which represent
the weight vector of the SVR linear expression. The support
vector based Takagi-Sugeno-Kang fuzzy system (TSK-SVR)
can be formulated as:

y; = wor + Z(wirxi) ®)

s
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where 3/ is the new output formulation that now represents
TSK-SVR. In order to implement SVR part of the hybrid
method, LIBSVM is utilized [17].



TABLE I
ENTIRE DATA SET PREDICTION RESULTS OF THE MOUSE ALLELES

Allele Allele

H2-D? | H2-K® H2-D? H2-K°
Methods q? q? AR AR
Additive [18] | 0.602 0.370 0.403 0.443
SVRMHC [5]1 | 0.749 0.568 0.170 0.382
RVMMHC-1 [8] | 0.840 0.664 0.297 0.527
RVMMHC-2 [8] | 0.845 0.691 0.316 0.489
TSK-SVR 0.912 0.792 0.140 0.340
Improvement 7.93% | 14.62% | 17.65% | 10.99%

TABLE III

LEAVE-ONE-OUT CROSS VALIDATED CORRELATION COEFFICIENT
PREDICTION RESULTS OF THE MOUSE ALLELES

Allele
H2-D? H2-K?
Methods q? q?
Additive [18] 0.401 0.454
SVRMHC [5] 0.456 0.486
TSK-SVR 0.462 0.490
Improvement 1.32% 0.82%

C. Performance Measurements of the Prediction Models

Two performance measurements, namely the coefficient
of determination (¢?) and average residual (AR) were used
for the predictive models in order to keep the assessments
consistent over the published results. ¢?, a statistical model
based upon the proportion of variability in a data set, is
defined as [19]:

> (pIC50; — pIC50;)?
F=1-5

> (pIC50; — pICEO;)

i=1

(10)

where pIC50; and pIC50; are the expected and predicted
values of the peptide, respectively. p/C50; denotes the
average of expected values in the prediction data set. As ¢
gets closer to one, the model is better constructed. On the
contrary, if it yields negative values, this indicates that the
model has poorly approximated the expected values. The
other measure, AR is expressed as:

> IpIC50; — pIC50;|
AR = =L

(1)

n

where n is the number of peptides in the allele. A successful
prediction can be achieved with lower values of AR whereas
its higher values show poorer predictions.

ITII. RESULTS AND DISCUSSION

The analysis of the model requires an efficient pre-
processing of features for the allele data sets. In general,
physico-chemical attributes of the data sets are represented

by real numbers. The features were normalized to [0, 1]
so that every feature fall within the same range of values.
In order to obtain attributes that have more representative
capability of the underlying information, priorly, a feature
selection method, namely Multi-Cluster Feature Selection
method was used [20]. The normalization and feature se-
lection were necessary to keep the low-dimensionality and
support the robustness of the TSK fuzzy system. TSK fuzzy
system was constructed using only two rules with the reduced
features. These rules are suffice for the proposed model to
build a robust and interpretable fuzzy system for the high-
dimensional data set by using relatively small number of
data samples. The structure of the TSK fuzzy system is
constituted by automating the parameters of the antecedent
and consequent parts. Values of the parameters of Gaussian
membership functions that characterise each fuzzy set of
the premise part were obtained by using Fuzzy c-Means
clustering method [21]. The coefficients of linear functions of
each rule for the consequent part were then identified using
SVR.

The performance of the proposed approach (TSK-SVR)
that models the relationship between the peptides and their
binding affinities was evaluated using MHC alleles. In Ta-
ble II, it can be seen that two different measures were used to
observe their influence on the prediction error. The prediction
results are comparatively better than those of the studies
presented in [18], [5] and [8] for MHC alleles H2-Db and
H2-Kb. The predictive performances have been improved by
7.9% (¢?) and 17.6% (AR) for the H2-Db allele; and 14.6%
(¢?) and 10.9% (AR) for the H2-Kb allele. It should be noted
that our literature search appears to indicate that these two
data sets have been understudied due to their complexity,
therefore not many papers other than the cited ones seem to
have appeared in the literature.

In order to further explain the results, the construction
of correlation diagram for each allele data set is used to
illustrate the relationship between the experimentally mea-
sured and predicted pIC50 values. When the performance is
perfect, the correlation diagram shows a straight line along
the 45° diagonal. A good quality of prediction performance
can be obtained when the data samples are mainly distributed
along the 45° diagonal. The divergence in the line is caused
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Fig. 1. Correlation diagrams for the prediction performance of mouse
alleles. a) H2-Db b) H2-Kb



by the prediction error between the measured and the pre-
dicted pIC50 values.

In order to avoid the problem of overfitting the parameters
need to be selected properly. Grid-search is one of the simple
and reliable methods for this purpose and allows parallel
computations to speed up the calculations. The optimal
parameters for the MHC alleles using the ¢? measure are
found to be C' = 75.0, ¢ = 0.20 for H2-Db, and C = 25.0,
0.50 for H2-Kb. The models contained 30 and 25
features for each MHC allele, respectively. The average
residual (AR) measure values of the proposed model are:
C = 9.10, ¢ = 0.05 for allele H2-Db; and C = 8.70,
e = 0.05 for allele H2-Kb. The final and refined models
contained 39 and 24 features, respectively.

In addition, each model was evaluated by using leave-one-
out cross validation (LOO-CV) using the cross-validated cor-
relation coefficient. This will allow an independent predictive
assessment as compared to the assessment carried out using
the entire data set. As the compared methods presented in
the literature did not report an LOO-CV AR measure, this
assessment was excluded from the calculations. The additive
method recognized 6 outliers for H2-Db and 7 outliers for
H2-Kb and they have been removed before the LOO-CV
calculations. These outliers were also excluded from the
proposed models during the LOO-CV calculations in order
to perform a consistent comparison. The optimal parameters
for the MHC alleles using the ¢? measure are found to be
C = 0.45, ¢ = 0.05 for H2-Db, and C' = 3.10, ¢ = 0.05
for H2-Kb. The models contained 34 and 21 features for
each MHC allele, respectively. As shown in Table III the
proposed models yielded LOO-CV ¢? values of 0.462 and
0.490 which are higher predictive accuracy than the additive
and SVRMHC methods. The cross-validated results suggest
that a better descriptive power has been achieved over the
unseen data indicating better generalisation ability of the
proposed hybrid method. In addition, the incorporation of
fuzzy system with SVR has enabled to improve SVR and
consequently resulting in a better modeling of uncertainty
even the model can only use small sample size being the
nature of peptide data. As stated above, the fuzzy if-then
rule set produced has been found to be useful and, due to
the space limitation in the paper, will be discussed during
the presentation.

€E =

IV. CONCLUSIONS

In this paper, TSK-SVR hybrid system was developed and
successfully applied in the prediction of binding affinity of
the mouse class | MHC alleles peptides, which is regarded as
one of the complex modeling problems in the post-genome
era.

The consequent and antecedent parameters of the Takagi-
Kang-Sugeno Fuzzy System were designed using the SVR
and Fuzzy C-Means clustering method, respectively. The
results show that as much as 17% improvement was achieved
over the previous studies that also include the results obtained
from the SVR-based experiments. The SVR-based learning
for TSK was shown to lead a better generalization and this

achievement clearly highlights that the SVR is benefited from
the inclusion of the fuzziness concept.

The promising results obtained show the potential applica-
tion of TSK-SVR to other quantitative and complex modeling
problems of bioinformatics. As a future work, TSK-SVR will
be extended to a type-2 fuzzy system along with other similar
bioinformatics applications in order to see whether predictive
performance can further be improved.
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