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Abstract— It is well established that both the choice of
recording reference (montage) and volume conduction affect
the connectivity measures obtained from scalp EEG. Our
purpose in this work is to establish the extent to which they
influence the graph theoretic measures of brain networks in
epilepsy obtained from scalp EEG. We evaluate and compare
two commonly used linear connectivity measures —cross-
correlation and coherence— with measures that account for
volume conduction, namely corrected cross-correlation, imagi-
nary coherence, phase lag index and weighted phase lag index.
We show that the graphs constructed with cross-correlation
and coherence are the most affected by volume conduction
and montage; however, they demonstrate the same trend —
decreasing connectivity at seizure onset, which continues de-
creasing in the ictal and early post-ictal period, increasing again
several minutes after the seizure has ended— with all other
measures except imaginary coherence. In particular, networks
constructed using cross-correlation yield better discrimination
between the pre-ictal and ictal periods than the measures less
sensitive to volume conduction. Thus, somewhat paradoxically,
although removing effects of volume conduction allows for a
more accurate reconstruction of the true underlying networks
this may come at the cost of discrimination ability with respect
to brain state.

I. INTRODUCTION

Epilepsy is one of the most common neurological disor-
ders of the brain, characterized by sudden and unpredictable
seizures. It is essential for a patient to have a warning that
a seizure is about to occur in order to avoid potentially
endangering situations. To this end, the scientific community
has continuously performed research for the development of
automated seizure detection and prediction algorithms based
on electroencephalographic (EEG) measurements, in order
to characterize the transition from the inter-ictal to the ictal
state (pre-ictal phase) in quantitative terms.

In the last decade or so, many researchers have used
complex network analysis —a methodology based on graph
theory— to investigate the brain. Different network types,
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such as random or small-world networks, are associated with
different underlying brain properties. Previous studies have
provided evidence that epileptic seizures are characterized
by changes in functional network features [1], [2].

The effect of volume conduction on connectivity measures
obtained from scalp EEG is well-established; it has been
shown that it may influence measures of correlation in the
time and frequency domains considerably [3]. Therefore,
alternative and/or modified measures have been proposed in
order to obtain correlation estimates between different scalp
EEG channels that take into account volume conduction and
reference effects (see e.g. [3], [4], [5]). Moreover, methods
that aim to reconstruct a suitable source space and then
apply measures to determine functional interactions have
been proposed (see e.g. [6], [7]). However, the quality of
source reconstruction strongly depends on the number of
available recording electrodes, which in the clinical setting
is typically low.

Since the correlation measures that are used for the con-
struction of the brain networks are known to be affected by
the montage and by volume conduction, it is very likely that
the estimated graph-theoretic measures may be influenced
as well. This influence has been considered on a limited
basis until now to our knowledge, using simulated data
in a recent study [5]. In this work, we compare several
correlation metrics —namely, cross-correlation, the odd part
of correlation, coherence, imaginary coherence, phase lag
index (PLI) and weighted PLI— and concluded that graph-
theoretic measures obtained from cross-correlation and co-
herence were the ones mostly affected by the choice of
reference and volume conduction.

II. METHODS

A. EEG recordings

Long-term video-EEG recordings were collected from
patients with epilepsy in the Neurology Ward of the Cyprus
Institute of Neurology and Genetics. Twenty-one electrodes
were placed according to the 10-20 international system
with two additional anterotemporal electrodes. The data were
recorded at a sampling rate of 200Hz. A 50Hz Notch filter
was applied to remove line noise and subsequently the
signals were band-pass filtered between 1 and 45Hz. Eye
artifacts were removed by applying Independent Component
Analysis (ICA) from the EEGLAB toolbox of Matlab. In
order to assess the possible effects of muscle artifacts, we
band-pass filtered the data between 1 and 20 Hz; the results
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were similar overall, therefore we present results when the
data were pre-processed as mentioned above.

Of the 5 patients we analyzed, here we focus on one
patient only, in order to rigorously examine the effects of
montage and volume conduction on the results. For this
specific patient, the seizure started focally on the EEG at P4-
O2 and generalized afterwards. The duration of the seizure
was 154 seconds and in this work we examined a section of
15 minutes before and 15 minutes after the seizure onset.

B. Recording Montages

Scalp EEG recording devices use differential amplifiers to
compute the voltage of each EEG channel, which take as
input the measurements of two electrodes and produce the
corresponding EEG channel as the difference between the
two inputs, after it has been amplified. The choice of input
electrodes to each amplifier is known as montage.

In the original recordings of our system, each amplifier
takes as input one of the 10-20 electrodes and one cephalic
reference electrode. This is an example of a common ref-
erence montage, since the reference electrode is common
to all amplifiers. Additionally, we have mathematically re-
referenced the data to Cz, which is often the reference
electrode of choice. The average reference montage subtracts
the average signal over all channels from the signal at each
channel. Finally, for the bipolar montage, pairs of electrodes
placed in near-by locations of the scalp are used to obtain the
time-series by subtracting the corresponding measurements.

C. Functional Network Construction

We calculated pairwise correlations between all pairs of
time series using the connectivity measures described next.
Edges were added between node pairs if the corresponding
connectivity measure exceeded a pre-specified threshold, the
value of which was dependent on the employed measure.

1) Cross-correlation: Given two time series x(t) and y(t),
with t ∈ 1..n, the normalized cross-correlation function
between x and y as a function of the lag, τ , is given by:

Cxy(τ) =
1

n− τ

n−τ∑
t=1

(
x(t)

σx

)(
y(t+ τ)

σx

)
where σx, σy are the standard deviations of x and y re-
spectively. Then, the correlation between the two signals is
computed as maxτ |Cxy|, over τ ∈ −100..100ms.

2) Corrected cross-correlation: Cross-correlation often
takes its maximum at zero lag in the case of scalp EEG mea-
surements. Consistent zero-lag correlations could be due to
volume conduction effects: currents from underlying sources
are conducted instantaneously through the head volume to
the EEG sensors. In order to measure true interactions not
occurring at zero lag, the odd-part of cross-correlation is
calculated as [8]:

C̃xy(τ) = Cxy(τ)− Cxy(−τ) for τ > 0

3) Coherence: Coherency is the equivalent of cross-
correlation in the frequency domain; it measures the linear
correlation between two signals x and y as a function of
the frequency f . It is defined as the cross-spectral density
between x and y normalized by the auto-spectral densities of
x and y. Coherency is a complex number, and for this reason
in many cases coherence is employed, which is defined as
the magnitude of coherency:

κxy(f) =
|〈Sxy(f)〉|√

|〈Sxx(f)〉||〈Syy(f)〉|
where Sxy is the cross-spectral density and Sxx, Syy are the
auto-spectral densities of x and y respectively.

4) Imaginary coherence: Nolte et al. [9] defined imag-
inary coherence as the imaginary part of coherency, after
observing that the imaginary part of coherency is insensitive
to volume conduction, while the real part is strongly affected.

5) Phase lag index (PLI): It is an index of asymmetry for
the distribution of instantaneous phase differences between
two time-series [10]. The instantaneous phases are obtained
by first band-pass filtering the signals in the frequency bands
of interest and then using the Hilbert transform to obtain the
phase of the analytic signal.

PLIxy = |〈sgn(∆φ(τ))〉|
where ∆φ is the phase difference between x and y.

6) Weighted phase lag index (WPLI): Vinck et al. [11]
argued that PLI’s sensitivity to noise and volume conduction
is hindered by the discontinuity of the measure, which is
caused by small perturbations turning phase lags into leads
and vice versa. To overcome this problem, they defined the
weighted phase lag index (WPLI), as follows:

WPLI =
|〈Imag(Sxy(f))〉|
〈|Imag(Sxy(f))|〉

D. Network Properties
1) Average degree: It is the average number of connec-

tions of a node in the graph

K =
1

n

∑
i∈N

ki

where ki is the degree (number of connections) of node i.
2) Global efficiency: The shortest path length, di,j , be-

tween a pair of nodes, i and j, is the minimum number of
edges that have to be traversed to get from node i to j.
The efficiency between i and j is defined as 1/di,j . Global
efficiency [12] is the average efficiency over all pairs of
nodes.

E =
1

n(n− 1)

∑
i,j∈N,i6=j

1

di,j

3) Clustering coefficient: The clustering coefficient, Ci, of
a node i is the fraction of existing edges between neighbours
of i over the maximal number of such possible connections
[13]. The global clustering coefficient, C, of the network is
the mean clustering coefficient among all nodes.

C =
1

n

∑
i∈N

Ci



Fig. 1. The average degree of the functional brain networks as a function
of time (seconds); comparison of montages for all connectivity measures.

III. RESULTS

A. The effect of montage on connectivity measures

Fig. 1 illustrates the average degree of the network as
a function of time (in seconds). The vertical dashed line
shows the beginning of the seizure, while the dotted line
indicates its end, as marked by the expert neurophysiologists.
It is evident that all measures, except imaginary coherence,
indicate a gradual decrease in the network average degree
after the seizure onset, which persists for approximately six
minutes, followed by a gradual increase, albeit to lower levels
than the pre-seizure period. The aforementioned decrease
is more pronounced when the network was constructed by
standard cross-correlation.

Corrected cross-correlation, imaginary coherence, PLI and
WPLI are less affected by the choice of reference than
cross-correlation and coherence. In the graphs corresponding
to cross-correlation and coherence we also observe that
the average degree is largest for the common reference
derivation (green line), followed by the average reference
(red line) and bipolar derivation (blue line). This again is
consistent with the notion of more pronounced instantaneous
spurious correlations at zero lag in the two former montages.
Interestingly, imaginary coherence is reversely affected by
the montage of choice, with bipolar montage yielding higher
connectivity, followed by common reference and then by
average reference.

We should note that the average degree obtained when
using measures sensitive to zero-lag correlations is not only
affected by the reference problem but also by volume con-
duction. The bipolar montage yields better estimates of the
local gradient of the potential along the scalp surface than a
fixed reference at a far distance [14, p. 289].

In the following sections, functional brain networks have
been constructed using bipolar montage. However we note
that despite the differences, the overall changes of the
connectivity measures as a function of brain state (inter-ictal,
ictal, post-ictal) remained the same regardless of montage.

Fig. 2. Network properties of the functional brain networks constructed
using cross-correlation (green line) and corrected cross-correlation (red line).

B. Time-domain connectivity measures

Fig. 2 illustrates the network properties defined in Section
II-D as a function of time, for the standard (green line)
and corrected (red line) cross-correlation functional brain
networks. Whereas the results from both measures exhibit
similar trends as before, during and after the seizure, the
seizure-related changes are more pronounced for standard
cross-correlation —the drops in average degree, efficiency
and clustering coefficient during the ictal and post-ictal
period are overall steeper. For corrected cross-correlation, the
clustering coefficient is the measure that exhibits the clearest
seizure-related changes; whereas the average degree remains
relatively constant, clustering drops in the post-ictal period,
suggesting a different topology (less clusters) even though
the average network connectivity does not change much. As
mentioned earlier, we assessed the possible effects of muscle
artifacts by repeating the analysis when the data where band-
pass filtered between 1–20Hz; the results were qualitatively
the same and hence we do not show these separately.

C. Coherence and Imaginary Coherence (IC)

We constructed networks with coherence and imaginary
coherence for all the frequency bands of interest —delta
(1−4Hz), theta (4−8Hz), alpha (8−13Hz), beta (13−30Hz)
and gamma (30−45Hz). We observed that, for the networks
constructed with the standard coherence, the clearer drop in
all three measures occurred in the theta and alpha bands
and to a lesser degree in the beta band. On the other hand,
IC exhibits a different behaviour overall: the larger values
were obtained in the higher frequency bands (beta, gamma),
while a slight increase was observed in the theta and alpha
bands, suggesting that the two measures reflect different
aspects of the underlying functional interactions. Similar to
the results shown for cross-correlation, their values obtained
by coherence drop markedly in the ictal and post-ictal period,
whereas no clear patterns emerge when their values were
obtained by imaginary coherence. Fig. 3 illustrates coherence
and IC for the theta and alpha bands, where the largest
changes were observed.



Fig. 3. Network properties of the functional brain networks constructed
using coherence (green line) and imaginary coherence (red line) in the theta
(4 − 8Hz) and alpha (8 − 13Hz) bands.

D. PLI and WPLI

Both PLI and WPLI were designed to mitigate effects
of volume conduction [10], [11]. As shown in Section II-
C both the PLI and WPLI were mostly unaffected by the
choice of montage. Fig. 4 depicts the network properties
of PLI and weighted PLI as a function of time. The same
trend is observed as with correlation-based measures and
coherence (Figs. 2, 3). We constructed the networks again
at the different frequency bands with PLI and weighted PLI
and noticed that the decrease in the network connectivity
that is observed for the broadband signal at seizure onset
is mainly due to the beta band. In the remaining bands the
PLI and WPLI-based network showed very little modulation
with brain state, similar to what is observed with imaginary
coherence.

IV. CONCLUSIONS

In this work, we investigated the effects of choice of
reference (montage) and volume conduction on six bivariate
signal correlation measures. The measures mostly affected
by the montage and volume conduction were the standard
cross-correlation and, to a lesser degree, coherence, where
the average reference and the common reference montages
resulted in higher connectivity than the bipolar montage.
Corrected cross-correlation, PLI and WPLI were the least
affected measures, whereby all three montages yielded sim-
ilar connectivity patterns. Imaginary coherence, contrary to
all other measures, was reversely affected by the montage,
with bipolar resulting in higher connectivity.

Interestingly, our data also suggest that in some cases,
measures that are more prone to the effects of volume
conduction (e.g. standard cross-correlation) may yield results
that are more sensitive in detecting seizure-related changes in
brain state (inter-ictal, ictal, post-ictal, see Fig. 2). That said,
clustering and average degree measures of corrected-cross-
correlation and PLI/ WPLI also show changes when moving
from the inter-ictal to the ictal and post-ictal periods.

Fig. 4. Network properties of the functional brain networks constructed
using PLI (green line) and weighted PLI (red line) in the broadband (1 −
45Hz) signal.
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