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Abstract— RNAs are functionally important in many biologi-
cal processes. Predicting secondary structures of RNAs can help
understanding 3D structures and functions of RNAs. However,
RNA secondary structure prediction with pseudoknots is NP-
complete. Predicting whether the RNAs contain pseudoknots
in advance can save computation time as secondary structure
prediction without pseudoknots is much faster. In this paper,
we use k-mer occurrences as attributes to predict whether the
RNAs have pseudoknots in the secondary structure. The results
show two classifiers can predict 90% of the instance correctly.

Index Terms— pseudoknots, classification, k-mer

I. INTRODUCTION

RNAs are very important in organisms. They are not
only responsible for proteins formation, but also for gene
regulation and catalyzing biological reactions [1], [2]. In
Bioinformatics, predicting RNA secondary structure with
pseudoknots is a very important problem, because it can
reveal the 3D structure and functions of an RNA [3], [4].
Pseudoknot is a special motif of RNA secondary structure.
They can be found in ribosomal RNAs, telomerase RNAs and
viral RNAs [5], [6]. Moreover, they play key roles in many
biological processes, like splicing, ribosomal frameshifting,
rival genome replication and regulation of translation[7], [8],
[9], [10]. Figure 1 shows an example of pseudoknot.

The motivations of the paper are as follow. First, predicting
RNA secondary structure with pseudoknots is NP-complete
[11] while the problem can be solved in O(n3) time if
pseudoknots are neglected, where n is the sequence length.
A lot of computational time can be saved if fast pseudoknots
classification is done before structure prediction. Second,
there is no previous work related to RNA pseudoknots clas-
sification. Third, pseudoknots are RNA secondary structure
and RNA secondary structure depends on its sequences. K-
mer of RNA sequences should contain the information to
predict pseudoknots in RNAs.

In this paper, we use the k-mer occurrences of RNAs as
attributes to classify whether pseudoknots exists in RNAs.
We first collect RNA sequences from a database called
RNA STRAND [12]. Then we perform data preprocessing
to generate k-mer occurrences files for the RNAs sequences.
Three classifiers from a machine learning software called
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Fig. 1: An example of RNA pseudoknot

WEKA [13] is used for classification. We then perform a
10-fold cross-validation test for evaluation.

The outline of the paper is as follows. Section II describes
the problem definition. Section III describes the materials
and methods. Section IV describes the results. Section V
concludes the paper.

II. PROBLEM DEFINITION

The problem definition of pseudoknots classification is
described here. The input of the problem is a RNA sequence.
The output of the problem is to predict whether the input
RNA sequence have pseudoknots in the secondary structure.

III. MATERIALS AND METHODS

In this section, we will describe the data we used for
the pseudoknots classification, how the data preprocessing
is done and how the classification is done.

A. Data preparation and preprocessing

We get the RNA sequences with and without pseudoknots
from a database called RNA STRAND [12]. The dataset
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Fig. 2: An example showing the occurrences computation
and normalization for a RNA sequence

contains 2333 RNAs sequences with pseudoknots and 2333
RNAs sequences without pseudoknots. A filtering process
is carried out to filter out those sequences that contain
notations besides ”ACGU”. After the filtering, there are
1624 RNAs sequences with pseudoknots and 1615 RNAs
sequences without pseudoknots remaining. Then, the k-
mer occurrences of each RNA sequence are computed. We
compute the k-mer occurrences from 1-mer to 6-mer. The
k-mer occurrences are then normalized using the length of
the RNA sequence. Figure 2 shows an example of the k-
mer occurrences counting and the normalization. Finally, six
occurrences files with class labels are generated from 1-mer
to 6-mer. An example is shown in Figure 3.

B. Data Mining

An open sourced machine learning software WEKA [13]
is used for classification. The WEKA version is 3.7.9. Three
different classification methods have been used separately for
classification. The three classifiers are: a multinomial Naive
Bayes classifier (NVM) [14], a multinomial logistic regres-
sion model with a ridge estimator (Logistic) [15] and C4.5
decision tree (J48) [16]. We will test all occurrences files on
all three classifiers. For each testing, one occurrences file is
inputted to one classifiers and a 10-fold cross-validation test
on the input data is performed.

Fig. 3: An example showing the occurrences files for 1-mer
(top) and 2-mer (bottom) with class labels

Fig. 4: An complete workflow of the classification process

Before the classification, an attribute selection process is
carried out by the attribute selection function of WEKA.
The attribute evaluator used is ”CorrelationAttributeEval”
which ”evaluates the worth of an attribute by measuring
the correlation (Pearson’s) between it and the class” as
mentioned in the WEKA document. In the classification
process, we have tested different threshold for the number
of attributes selected, which will be shown in Section IV.

Here, we will describe the settings of the three classifiers.
For the multinomial Naive Bayes classifier (NVM) and the
multinomial logistic regression model with a ridge estimator
(Logistic), the settings are both kept as default. For C4.5
decision tree (J48), all settings are kept as default except the
minimum numbers of instances per leaf to reduce the tree
size. We have tested several thresholds of minimum numbers



Fig. 5: Performance of C4.5 decision tree. X-axis is the
average correctly classified instances in percent. Y-axis is
the minimum numbers of instances per leaf in C4.5 decision
tree. The graph shows the performance of C4.5 decision
trees using different k-mer occurrences files with different
thresholds.

of instances per leaf. The complete workflow is shown in
Figure 4.

IV. RESULTS

In this section, the performance of three classifiers with
different k-mer occurrences as attributes will be described.
To evaluate the performance of the classifiers, the number of
correctly classified instances is used.

We have tested the performance of C4.5 decision tree (J48)
using several thresholds of minimum numbers of instances
per leaf. The result is shown in Figure 5. The thresholds are
chosen from 30 to 120, which are around 1% to 4% of the
total number of instances. The average correctly classified
instances only slightly decrease when the minimum numbers
of instances per leaf increases.

Figure 7 shows the performance of three classifiers with
1-mer to 6-mer occurrences. Performance of three classi-
fiers increase as the number of attributes selected increases
and then converges quickly after 10. C4.5 decision tree
and logistic regression perform very well. They can both
predict around 90% instances correctly using 3-mer, 4-
mer, 5-mer and 6-mer occurrences as attributes. Multinomial
Naive Bayes classifier always performs worse than the other
classifiers.

The convergences speeds of the classifiers are different.
The performance of C4.5 decision tree can converge us-
ing around 10 attributes for 3-mer, 4-mer, 5-mer and 6-
mer occurrences. Logistic regression needs more number of
attributes to converge. The fast convergence of C4.5 decision
tree may suggest some k-mers are more important for the
formation of pseudoknots in secondary structure. The top ten
k-mer selected by the attribute selection process are listed in
Figure 6.

V. DISCUSSION AND CONCLUSION

In this paper, we have used k-mer occurrences of RNA
sequences to predict whether the RNA sequences have

Fig. 6: First ten k-mers selected by attribute selection process

pseudoknots in the secondary structures. Both C4.5 decision
tree and multinomial logistic regression model with a ridge
estimator can predict 90% of the instances correctly. This
result may further help secondary structure prediction in
the future. The fast convergence of the C4.5 decision tree
suggests that some k-mers may be critical to the formation
of pseudoknots. We will look into the relative position of the
k-mers with respect to the known pseudoknots in the future.
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