
  

 

Abstract – We present a system to detect seizure and spike in 

Epilepsy Electroencephalogram (EEG) analysis and 

characterize different epilepsy EEG types. After extracting 

features from three EEG types, Normal, Seizure and Spike, with 

Empirical Mode Decomposition (EMD), we do Analysis of 

variance (ANOVA) to classify conspicuous features and 

low-resolution features, and build Gaussian distributions of 

conspicuous features for probability density function (PDF) to 

do classification. Using EMD, the recognition rate improved 

from 70% to 90%. With ANOVA, the recognition rate can reach 

99%. The linear model accelerates the system from 2 hours to 90 

seconds compare to the previous approach. 

I. INTRODUCTION 

Epilepsy is a common chronic neurological disorder which 
afflicts approximately 1% of the population and is 
characterized by recurrent unprovoked seizures [1]. EEG 
signals play an important role in the diagnosis of epilepsy. 
While most traditional work try to classify EEG type based on 
single channel analysis, how to detect seizure in multichannel 
becomes highly respected recently [2]. With electrodes at 
various positions on the scalp of subjects, doctors can observe 
EEG data real-time on screen and store the instantaneous 
cerebral electrical activities data in computers. 

Several methods have been devised for detection of 
seizure and spike based on EEG data, including determination 
of wavelet coefficients [3], eigenvectors [4], time-frequency 
analysis [5] and principal component analysis [6] in 
algorithms such as expert systems [7], template methods [8], 
artificial neural networks [9], wavelet analysis [10], support 
vector machines [11], Kalman filters [12], independent 
component analysis [13], and fuzzy c-mean [14]. Our team 
had proposed some outcome with wavelet transform and 
approximate entropy using support vector machine [15] [16]. 

In this research, we present a method to select features. By 
defining each channel in an EEG signal to a variable and 
calculate the statistic characteristics of the variables while 
doing Empirical Mode Decomposition (EMD) [17], 
integrating all features of one segment to a sample vector, and 
combining all sample vectors of an EEG type to a sample 
matrix, we will be able to do Analysis of Variance (ANOVA) 
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to each extracted feature. After selecting the informative 
feature, we construct Gaussian distributions in hyper-plane for 
the three EEG types. We then calculate the probability density 
function (PDF) from one segment to all Gaussian distributions 
to distinguish the segment to a specific EEG type. 

II. MATERIAL 

A. Subjects 

Our research uses clinical data from National Taiwan 
University Hospital (NTUH). The sampling frequency is 
200Hz. The EEG data contain 16 channels with the electrodes 
located according to the ISO 10-20 system [18]. 

B. Data Recording 

All patients were lying down in bed, taking an 8 hours long 
record including awake and asleep. The proposed work 
retrieves 600 seconds for each EEG type, normal, seizure, and 
spike (burst-suppression), from 9 patients. 

C. Coding Tool and Environments 

In this project, we use MATLAB 2012a as the coding tool. 
Our operating system is Windows 7. The computer is ASUS, 
with Intel®  Core™ i7-2600 CPU @3.4Gh, 8GB RAM, 64bits 
operating system. 

III. METHOD 

The proposed method used the standard classification 
process with signal pre-processing, feature extraction, feature 
selection and pattern recognition as in Figure 1. 

A. Signal Pre-Processing 

We use IIR as our pre-processing method. Since most EEG 
artifacts caused by electrical power lines are higher than 60Hz, 
we can simply filter out all signals exceeding 60Hz [19]. 
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Fig. 1. Classification Process. 
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Fig. 3a. Empirical Mode Decomposition 

 

Fig. 3b. Input and IMF1 to IMF4. 

B. Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD), based on Hilbert 
Huang Transform (HHT), is an algorithm for non-linear and 
non-stationary signal processing [17]. 

EMD separates a signal into several Intrinsic Mode 
Functions (IMFs). The proposed method separates the signal 
into 4 IMFs before we start extracting the features, increase 
the input data amount to 5 times the original data size 
including the original data. The process is shown in Figure 3. 

Since IMFs imply bio-continuity of a signal, we expect the 
extracted features directly link to Epileptic seizure or spike. 

C. Feature Extraction 

For every 400 time points, we slice them into a segment 
based on the commands from doctors, and construct a 2D raw 
data matrix X (1), Figure 2. 

 X = {Xi, j}; imax = 400, jmax = 16, 

where i = time point, j = channel number. 

We have 300 raw data matrixes for each EEG type. We 
calculate the characteristics for each segment and combine all 
segments in one type as one 2D feature matrix Y (2). 

 Y = {Ym, n}; mmax = 100, nmax = N, 

where m = segment number, n = the number of statistic 
characteristics; N is the number of statistic feature extracted 
from X. Note that in this experiment we use 100 segments of 
each EEG type as training data, the other 600 segments as 
testing data. 

We test several different feature sets in this presented 
work. 

1. Mean of each channel (3), standard deviation of each 
channel (4), covariance (5) and correlation coefficient 
between all channels (6). The number of features is 
291; N = 291. 

2. Mean of all channels, mean of standard deviation of all 
channels, mean of covariance among all channels, and 
sum of all correlation coefficients without 
self-correlated. The number of features is 4; N = 4. 

3. Mean of all channels, Max, median, and min of 
standard deviation of each channel, mean of 
covariance among all channels, and sum of all 
correlation coefficients without self-correlated, 
median and min of correlation coefficient. The number 
of features is 8; N = 8. 

4. Mean and standard deviation of each channel and their 
4 stage IMF derived by EMD; Covariance and 
correlation coefficient among all channels. The 
number of features is 672; N = 672. 

5. Mean of all channels, Max, median, and min of 
standard deviation of each channel and their 4 stage 
IMF derived by EMD. Mean of covariance among all 
channels, and sum of all correlation coefficients 
without self-correlated, median and min of correlation 
coefficient. The number of features is 24; N = 24. 

6. 24 features selected by the proposed feature selection 
algorithm 2 from feature set 1. 

7. 24 features selected by the proposed feature selection 
algorithm 2 from feature set 4. 
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D. Feature Selection 

In this experiment, we use ANOVA (8) to do feature 
selection. Since ANOVA will detect whether a feature is 
different in different EEG types or not, we use ANOVA to 
check the F value for all features and find the features that can 
tell the difference. 

 Fig. 4. Block-diagram. 

 

  
Fig. 2. X raw data matrix. 

 



  

 Null Hypothesis:          (7) 

 F = 
                       

                     
 (8) 

SS(between) =  ∑   ̅    ̅    

SS(within) = ∑ ∑   ̅     ̅  
 

   

df(between) = g-1 

df(within) = g(m-1), where g is the number of EEG types. 

Feature Selection Algorithm: Do ANOVA to two of the 
EEG types at a time and add the significant features together 
after doing one after another. The hypothesis is (9). 

                           (9) 

Every feature that is good at finding the difference 
between two EEG types will be chosen. The weightings to 
separate every two EEG types are equal. For repeated features, 
choose the top k high F value features in the lowest F value 
group, where k is the number of repeated features. 

E. Pattern Recognition 

We calculate the mean  ̅  and the standard deviation    
for Y of each EEG type. Then, we calculate the probability 
density function (10) for each EEG type. 
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To reduce the complexity of calculation, we apply a log to 
the PDF and change it to the form (10) and define a new f’μ,α2. 
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Since the algorithm compare the probability among each 
Gaussian distribution of all training EEG record types, and do 
not need the exact value, we use (11) to do the comparison. 

When a new training data join in, the algorithm allows us 
to re-train the model without running the whole data again. 
The algorithm is more feasible than SVM in clinical uses. 

IV. RESULT 

In epilepsy data processing, spike and normal are unlikely 
distinguishable and the tradeoff between both recognition 
rates is very important. 

Tables I-IV show the results generated by the proposed 
system, with probability density function. 

In the experiment, we can see that EMD does help the 
system gain more information. From Table I to Table II, the 
average accuracy increases from about 70% to about 90%. 

TABLE I.  FEATURE SETS WITHOUT EMD 

Classifying 

Accuracy 

Feature Set 
feature set 1 features set 2 features set 3 

Training data 

self-predict 

300 segments 

Normal: 78% 

Spike: 93% 

Seizure: 100% 
Total: 90.3% 

Normal: 74% 

Spike: 85% 

Seizure: 100% 
Total: 86.3% 

Normal: 85% 

Spike: 95% 

Seizure: 100% 
Total: 93.3% 

Testing data 

prediction 

600 segments 

Normal: 34.5% 

Spike: 88% 

Seizure: 100% 
Total: 74.2% 

Normal: 37.5% 

Spike: 71% 

Seizure: 100% 
Total: 69.5% 

Normal: 61.5% 

Spike: 74% 

Seizure: 100% 
Total: 78.5% 

TABLE II.  FEATURE SETS WITH EMD, WITHOUT FEATURE SELECTION 

ALGORITHM 

Classifying 

Accuracy 

Feature Set 
features set 4 feature set 5 

Training data 
self-predict 

300 segments 

Normal: 90% 
Spike: 98% 

Seizure: 100% 

Total: 96% 

Normal: 98% 
Spike: 100% 

Seizure: 100% 

Total: 99.3% 

Testing data 

prediction 

600 segments 

Normal: 87% 

Spike: 97% 

Seizure: 100% 
Total: 94.7% 

Normal: 94.5% 

Spike: 90% 

Seizure: 100% 
Total: 94.8% 

a. Feature set 5 is selected based on prior knowledge to the characteristic of each EEG type. 

TABLE III.  FEATURE SETS WITH FEATURE SELECTION ALGORITHM 

Classifying 

Accuracy 

Feature Set 
feature set 6 feature set 7 

Training data 

self-predict 

300 segments 

Normal: 77% 

Spike: 98% 

Seizure: 100% 
Total: 91.7% 

Normal: 98% 

Spike: 100% 

Seizure: 100% 
Total: 99.3% 

Testing data 

prediction 

600 segments 

Normal: 78.5% 

Spike: 87% 

Seizure: 100% 
Total: 88.5% 

Normal: 99% 

Spike: 100% 

Seizure: 100% 
Total: 99.7% 

 
Comparing Table I, II and III, the results are better with 

the proposed feature selection algorithm. Compared to the 
result of feature set 1, feature set 6 increases its accuracy from 
74.2% to 88.5%; Compared to the result of feature set 4, 
feature set 7 increases its accuracy from 94.7% to 99.7%. 

TABLE IV.  COMPARE TO OTHER RESEARCHES 

Author Performancea 

Sensitivityb Specificityc Precisiond 

Leistritz et. al. [20] 60% 84% 67% 

Sarkela et. al. and 

Palmu. et. al. [21], [22] 

29% 92% 87% 

Bhattacharyya et. al. 
[23], [24] 

81% 89% 80% 

Shen et al. [16] (same 

samples in this project) 

99.5% 99.8% 99.5% 

Proposed Method 100% 99.5% 99.5% 

a. Table V only considers spike detection accuracy.  b. Sensitivity = TP / (TP + FN). 

c. Specificity = TN / (TN + FP).  d. Precision = TP / (TP + FP). 

True positive (TP) means a spike segment is correctly 
detected. True negative (TN) means a non-spike segment is 
correctly detected. False positive (FP) means a non-spike 
segment is incorrectly detected as spike segment. False 
negative (FN) means a spike segment is incorrectly detected. 

TABLE V.  TRAINING AND PREDICTION SPEED COMPARISON 

Author Time Consumed (100 time tests) 
Training Prediction 

Shen et al. [16] (same 
samples in this project) 

116 4 minutes 
(~6960 seconds) 

4 0.2 seconds 

Proposed Method 90 3 seconds 4 0.3 seconds 

V. EVALUATION 

To find more information, we use EMD to extract more 
informative features. In the comparison of Tables I and II, we 
find that EMD is a good feature extraction support mathematic 
tool. More features with more information that is linked to 
Epileptic were found with the process of EMD. The result in 
Table II shows a lot better than in Table I. 



  

More features do not mean better recognizing rate. In fact, 
too much useless features make the recognition rate lower 
instead. As far as concerned, useless features often perform as 
noise in the classification. 

The features selected to distinguish normal EEG data from 
spike EEG data, to distinguish normal EEG data from seizure 
EEG data, and to distinguish spike EEG data from seizure 
EEG data are not the same. 

We characterize the properties of each EEG type: 

EEG Normal:  Signals of this type do not change very 
often. Their standard deviations in all dimensions are small. 
They have small covariance and correlation coefficients 
between each channel. The standard deviations in IMF1 in 
EEG normal are smaller than the value in EEG spike. 

EEG Spike: Standard deviations in all dimensions are 
higher than EEG normal. They have smaller correlation 
coefficients than EEG normal. The standard deviations in 
IMF1 in EEG spike are higher than the value in EEG normal. 

EEG Seizure: Signals of this type change a lot all the time 
correspondently. The standard deviations of this type are big 
compared to spike and normal. Their covariance is big. The 
best features to distinguish seizure from normal and spike are 
those standard deviations of raw data. 

For Table IV, the performance of the proposed method is 
better than previous work especially in sensitivity. EMD is 
more sensitive to spike event. 

Table V shows the efficiency of linear training algorithms. 
Fast and adaptive training is more feasible in practical uses. 

VI. CONCLUSION 

Currently, EEG interpretation can only be analyzed by 
neurologists and epileptologists, which often takes a very long 
time to go through all of the data. This research proposes an 
ultra-fast classifying system for epilepsy EEG types by using 
probability density function with EMD and ANOVA feature 
selection that can help clinical practice. 
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