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Abstract—Since the beginning of a human genome project,
12 years have passed. There are many studies regarding the
meaning of human genome sequences and the effort to identify
the whole genome of other species. Although genes significantly
affect phenotype, the importance of other factors have increased.
In this paper, we propose an autocorrelation based method to
arrange the repetitive elements which demonstrate a major part
of the genomic sequences. The search for the entire genome
based on a simple mathematical analysis will be given. The
performance of our proposed self autocorrelation based method
will be compared with that of conventional scheme for the human
chromosome sequence. Fast scanning of the genome sequence
based on our proposed scheme can give a clue to analyze the
complex function of the genomic sequences.

Index Terms—autocorrelation, repetitive element, genomic se-
quence

I. INTRODUCTION

Since the first human genome was reported to be decoded
in 2001, the genome sequences of several humans as well as a
range of other species have been published. Public availability
of these genome databases allows for in-depth investigations
into the biology of the genome, primarily in regard to their
roles in phenotypic determination and disease processes.

There are repetitive elements in majority of the species’
genome sequences. It is controversial that these repetitive
elements are meaningful in identifying the characteristics of
a number of species. From many recent biological researches,
the repetitive elements are determined to show the origin of
various diseases such as Huntington’s disease, Friedreich’s
ataxia, et al. Besides the repetitive elements’ roles, it is
necessary to analyze these repetitive elements from the whole
genome [1], [2]. The fast search of the repetitive elements can
help the understanding of the genome sequences’ structure.

The repetitive elements are categorized in two groups by
the gap between the repetitive elements. First, tandem repeat
is the repetitive element in which each repeat is located
adjacently. These tandem repeats can also be divided into
three subgroups corresponding to the repeat unit’s length.
Microsatellite repeat is a tandem repeat with a unit length
of 1-4 base pairs, minisatellite is composed of tandem repeats
with 6-64 base pairs, and satellite repeats is constructed by
a long tandem repeat with a unit length of 5-171 base pair.
Second, interspersed repeat is a repetitive element in which
each repeat of a family exists far away. It is also divided
into several subgroups: short interspersed nuclear elements,
long interspersed nuclear elements, transposons, long terminal
repeats and so on.

In recent years, there have been several researches regard-
ing the examinations of repetitive elements. Tandem repeat
finder(TRF) [3] searched tandem repeats using the com-
putational algorithms employing two criteria: sum of head
test and apparent size test. After the TRF study, there are
some attempts to find the tandem repeats. ATRHunter[4]
found tandem repeats-like repeats using a two phase search
which is composed of screening phase and verification phase.
TandemSWAN [5] determined fuzzy tandem repeats using the
stochastic approach called mask probability and MotiF model.
Spectral repeat finder(SRF) [6] indentified the repetitive ele-
ments including both tandem repeats and interspersed repeats
via discrete fourier transform approach.

The analysis using various mathematical methods was done
for the genomic sequences. A frequency-domain analysis
for biomolecular sequences used discrete complex value to
analyze DNA sequences [7]. Using autocorrelation function,
Herzel et al. found 10-11 base pair periodicities in the genome
[8], while in another study, they employed the entire 4 × 4
dimensional covariance matrix of DNA sequences [9]. It was
proved that a computational algorithm to find the periodic
DNA sequences’ pitch with 10-11 period reflects the char-
acteristics of periodic nucleotide sequences [10]. A critical
review for the genomic analysis using a correlation structure
was summarized in [11].

Diverse populations of the repetitive elements are abun-
dantly present in the genomes of most eukaryotes, with
constituting 45% or more portions in the human genome.
However, less than 3 % of the sequence constitutes the entire
set of ~25,000 to 30,000 typical protein-coding sequences
(genes). Although individual repetitive elements’ participation
in biological processes are well-studied, the investigation of
the properties of complex repetitive element arrangements, as a
functional genome unit, has not drawn much attention from the
field. The comprehensive profile of a genome-wide distribution
of repetitive element arrangement architecture in the human
genome and other species have not been established yet. In
this study, we will identify the genomic repetitive element
arrangement using a self autocorrelation function for whole
genome or individual chromosome.

The remainder of this paper is organized as follows. Section
II will present the operation and mathematical analysis of
our proposed algorithm. Self autocorrelation function will
be explained with a new mapping function from the DNA
sequence to the numerical value based on the correlation
between two nucleotide bases. In Section III, we will evaluate
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our proposed scheme using the results for human chromo-
some Y. Conventional spectral repeat finder and proposed
self autocorrelation based approach will be discussed. Finally,
conclusions are made in Section IV.

II. AUTO-CORRELATION BASED METHOD

A. Methods

It is necessary to indicate a target sequence as a numer-
ical value. Converting a character sequence to a numerical
sequence has been done in various researches. Some of them
indicate the DNA sequences as a sequence of complex num-
bers, for example, convert A to 1+ j, G to 1− j, C to −1+ j,
and T to −1 − j where j2 = −1. When the probability of
each base-pair appears to be the same, this converted sequence
has mean of 0. Using this mapping structure, the DNA can be
analyzed sequences mathematically. But, we use the functional
mapping rather than this individual mapping of the nucleic
acids.

The numerical mapping of the DNA sequences used in our
paper will be presented as follows. Instead of mapping each
nucleotide base as a numerical value, the correlation of two
DNA sequences is selected to measure a sequence mapping.
The autocorrelation function is used to detect a periodic signal
at initial step. When discrete real-numbered signal Xn has
E{Xn} = µ, then the value of autocorrelation r(k) is defined
as the expected multiplication of corresponding signal Xn and
delayed sequence Xn+k as follows.

r(k) , E{(Xn − µ)(Xn+k − µ)} = E{XnXn+k} − µ2 (1)

If this function is maximized with τ over τ ∈ (0, N ] where
N is the length of Xn, then τ can be a minimal possible
period. Whether it is a real periodic or asymptotically periodic
is not clear yet.

Let’s consider original DNA sequence Dn, where Di ∈
{A,G,C, T}, i = 1, 2, ..., N . A mapping function I(a, b)
expresses the correlation of two nucleotides a and b, as a real
number, which is defined as

I(a, b) =

{
3 , a = b

−1 , a 6= b
(2)

where the function I(a, b) has mean 0 when the sequences are
identically and independently distributed(i.i.d.). From the def-
inition of function I(a,b), a highly correlated sequence tends
to have higher values than using an individually characterized
mapping. Then, when the candidate period of a sequence
is given as t, the modified autocorrelation function called
self autocorrelation(SAC) function s(t) can be described as
follows.

s(t) =

N−t+1∑
n=1

I(Dn, Dn+t) (3)

Again, if the sequences are independent of each other, the
expected value of this self autocorrelation function becomes 0.

Since I(a, b) is an increasing function for the same value of a
and b, we can see that at a minimum possible period, s(t) has
a maximum value. The predicted period T̂ is the minimum
value of t which maximizes s(t).

T̂ = argmax
t

s(t) (4)

This predicted value will be used to find locally repeated
elements.

B. Design

The extraction algorithm for locally repetitive elements is
designed based on the self autocorrelation method presented
in the methodology subsection. The locally repetitive elements
include tandem repeats and interspersed repeats which appear
in a small range due to the insertion or deletion phenomenon
between them. This small gap of interspersed repeat is denoted
by γ. The locally repetitive element extraction algorithm is
implemented in the following four steps as shown in Fig. 1.

Figure 1. Flow chart of self autocorrelation based search algorithm

In the first step, raw DNA sequences are decomposed to sev-
eral windows with length W , in which the finding algorithm
operates. As a unit of an operation, a window is employed to
manage a huge amount of a genome. The window is a partition
of a whole DNA sequence, which is the target for the repetitive
elements’ extraction. When the size of a genome is large,
the computational complexity will increase dramatically. Self
autocorrelation function in the sequence with fixed length will
decrease this unexpected boost of computational complexity.
While this block operation increases the speed of computation,
a repetitive element which locates outside of the block would
not be seen. Although we cannot search all repetitive elements
which are scattered in the whole genome, we can extract
locally repetitive element efficiently.

At the second step, we should compute an expected period
T̂ in a local window. For the window sequence, we apply self
autocorrelation function s(t). This function has a higher value
when a periodic signal exists. For instance, if a DNA sequence
Yn is a trinucleotide tandem repeat, then the sequence Yn+3

delayed by 3 from Yn has the same sequence as Yn. In this
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case, s(t) will be maximized when t = 3. It is not possible
that the multiples of the period will be another maxima. In the
previous example, when t is selected as 6, then, s(6) < s(3)
because the summation’s end point in s(t) decreases.

In the next step, we need to identify if a repetitive sequence
candidate is an actual repetitive sequence that we want to
find. Some sequences can not be repeated purely, that is, the
maximum value of s(t) can be small, when the repeat is not
periodic. Thus, a self autocorrelation threshold η determines
whether the predicted period T̂ is obtained from periodic DNA
sequences where s(T̂ ) > η. In addition, a filtering is necessary
so that T̂ satisfies TL < T̂ < TH in order to classify the type
of repetitive elements among the repeat elements.

Finally, the repeat unit and the characteristics of the locally
repetitive elements are identified. From the predicted period
T̂ , we construct a unit window Rn where n = 1, 2, ..., T̂ . The
window sequence is a part of an original sequence, so Rk,n =
Dn′ , where n′ = k, ..., k+ T̂ −1. The correlation between the
window and the original sequence will be determined to find
repetitive element candidates. Then, the repeat sequence unit
R̂n is the same as Rk̂,n where

k̂ = argmax
k

N−T̂∑
j=0

T̂∑
n=1

I(Rk,n mod T̂ , Dj+n) (5)

III. RESULTS AND DISCUSSIONS

Spectral Repeat Finder(SRF) identifies the repetitive el-
ements such as tandem and interspersed repeats based on
Fourier Transform. The SRF finds repetitive elements us-
ing a mathematical analysis just as our proposed algorithm
does. The comparison between this Discrete Fourier Trans-
form(DFT) approach and our autocorrelation based approach
will be presented. The SRF finds repetitive elements using a
commonly defined DFT S(f) as follows.

S(f) =
∑
α

1

N2

∣∣∣∣∣∣
N∑
j=1

Uα(j)e
2πifj

∣∣∣∣∣∣
2

(6)

Here, Uα(j) is 1 when DNA sequence Dj = α, otherwise 0.
f is a frequency that is measured by a reciprocal of the period
or repeat unit’s length. This spectral analysis can achieve
clear result when each DNA sequence Dn is highly repeated
sequences with low mutations. When the other sequence is
mixed, the value of S(f) will decrease. That’s why an arbitrary
window size makes it difficult to find the repetitive element
as shown in Fig. 2. Since we don’t know the length of this
unknown repeat, it is dangerous to approximate the length of
this repeat.

The self autocorrelation(SAC) method can give a solution
to this unpredicted phenomenon. In a uncorrelated region, the
effect of random sequences is removed since it has a mean of
0. As we just focus on the comparatively maximum value
of a selected window size, we don’t need to consider the
other region that is not periodic. The length of the repeat
in a periodic region can be identified clearly using the self
autocorrelation function. The proposed scheme achieved much

Figure 2. DFT result for Human Y chromosome(16,440 Kbase, W=1000)

improved result in view of acquiring a period from the same
sequence as shown in Fig. 3.

Figure 3. Self autocorrelation result of Human Y chromosome(16,440 Kbase,
W=1000)

Now, the results of the SRF and the SAC for the same
sequence are presented in Table. I. Our proposed scheme
finds the largest pattern that contains all of these findings.
As shown in Table. I, the smaller pattern is involved in a
larger pattern. Using our algorithm, when we set the window
to a small value to the corresponding block, we can find these
small repeat patterns as well. It was shown that our proposed
algorithm identifies more than 100 nucleotide bases while the
conventional scheme doesn’t.

From the NCBI database’s human chromosome Y se-
quences, we extracted locally repetitive element data as shown
in Fig. 4. When the window size increases, the number of
searched patterns decreases at the same threshold value. As
the window sizes gets bigger, the probability that locally
repetitive genomic sequences do not appear gets larger due
to randomness effect. That is to say, the locally repetitive
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Table I
SEARCHED REPEAT PATTERN OF HUMAN Y CHROMOSOME(16,440

KBASE)

Searched Repeat Pattern Period
SRF TT 2

TGTTC 5
TCCAGA 6

TGCAGACTT 9
TATGTCCAGAGTTT 14

TCCAGAGTTTCTTCCTTC 18
TGTCCAGAGTTTCTTCCTTCT 21

GTTGTGTCCAGAGTTTCTTCCTTCT 25
TTGTGTCCAGAGTTTCTTCCTTCTG 25

SAC

TTTGTTCCTTCAGATGTGTCCAGATTTTCT
TTCTTCTTGCAGTTTCATGGTCTTGCTCAC

TTCAAGAATGAAGCTCCAGACCTTTACGGT
GAGTTTTACAGCACTTAAATGTGTTATATC

CAGAG

125

Figure 4. Number of locally repetitive elements vs threshold in Human Y
chromosome

elements are located in a small region. We can easily imagine
that the number of searched patterns increases with a smaller
threshold η. Based on the result of our research, we can expand
the coverage of our research by investigating the genome of
various species.

The SAC finds more expansive pattern compared to the
conventional repeat finder. The results from the SRF have
redundancies which are duplicated, while the SAC finds the
largest set of locally repeated pattern. Furthermore, by adapt-
ing various parameters here, we can acquire selective repeat
patterns in the windows. When we extend our schemes to
use a cross-correlation function, an interspersed repeat pattern
can be derived. We expect that this fast genomic calculation
can be applied to the next-generation genome-wide search of
repetitive elements.

IV. CONCLUSIONS

We have proposed the self autocorrelation(SAC) method
to find locally repetitive elements in genomic sequences. In
DNA sequences, the locally repetitive element is defined as the
repeat elements that are interspersed in a small range such as

the unit length of a repeat. An autocorrelation based mapping
function between the DNA sequences and the numerical value
has been proposed to find the locally repetitive elements in
the genomic sequences. The numerical result of our proposed
scheme has shown a more clear and clever arrangement
of repetitive elements. Our proposed method will give fast
scanning of the whole genome sequence.
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