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Abstract—The topography of the electrical field does not
vary randomly with time but rather displays short periods of
stable topographical configurations or spatial patterns, known
as microstates. The search of such patterns takes place in the
high dimensional electrode space with all the problems that
comes with it. In this paper, we present a technique for the
extraction, detection and representation of EEG microstates
based on the Local Global graph(LG graph). We use the
Local Global graph to represent the spatial configuration of
the topographic map and use a LG graph matching approach
to determine the different microstates.

The proposed method was applied on the average, over
trials, Event related potential recording presenting a positive
peak known as P300. Five dominant microstates were identified
using our methodology. During the whole period of the P300
peak there is one active microstate which presents frontal
and parietal topography which is expected for the phase
locked activations of the P300. The LG graph modeling of
the EEG topography provides a flexible descriptor for the
EEG topography and can be used for the efficient microstate
segmentation of the EEG.

I. INTRODUCTION

Electroencephalogram (EEG) is a brain imaging technique

that records the electrical activity of the brain. EEG presents

unparalleled temporal resolution, to the millisecond scale

and has been widely used for the study of brain functions

and pathologies[9], [4], [6]. The measured electrical activity

recorded is the the combined activation of large group of

neurons synchronously activating. The produced electrical

current propagates through the brain structures and the scull

to the head scalp. Due to volume conduction the recorded

electrical activity in the electrode is the summation of

multiple sources activating at the same time. Therefore, we

cannot directly derive the part of the brain that produced the

recorded activity.

Event related potentials (ERP) are brain activities recorded

as a response to a specific stimulus or event. In order

to identify the activity associated with the given stimulus

the experiment is repeated many times and the individual

trials are averaged. The resulting waveform is examined at a

specified electrode or electrodes and features like amplitude

and latency of different peaks are extracted. ERP allows us

to associate such EEG features with functional processing of

the stimulus and other cognitive functions.[5].

Over time different signal processing techniques have been

applied to extract information from the averaged waveform

as well as the single trials[9], [18], [11]. Often, the analysis
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is restricted in a certain time window and electrode where

the appearance of the brain response is expected. Different

algorithms have been proposed in order to identify the

optimal electrode and/or the most interesting segment of the

EEG in time[14]. The problem with this approach is that

these measures are dependent on the experimental setup.

The choice of the reference electrode affects the amplitude

and phase of the signals in the different electrodes and

significantly impacts the statistical outcome of the analysis

and its interpretation. Additionally, the a priori selection of an

electrode and/ or time interval introduces bias in the analysis

and may ignore other related components lying outside the

predefined spatial and temporal regions.

Nevertheless, this approach has been proven to be quite

successful and has provided useful insights in the brain

functionality, but there is still the need to take full advantage

of the provided EEG information. Towards this goal, an

alternative methodology has been proposed that moves the

EEG analysis from the temporal to the spatial domain and

considers the electrical field in the electrodes at each time

point[8], [17]. The main advantage of this approach is that

the distribution of the electrical activity in the electrodes

is independent of the reference electrode[8]. Topographic

analysis of the EEG offers a different view in the EEG

data and has provided new insights on the analysis of brain

functionality [7], [12], [15], [16].

The basic idea is that a certain topographic configuration

at a certain point in time is caused by a number of active

sources in the brain [13] and subsequently a certain topog-

raphy reflects a distinct brain functional state. It has been

shown that the topography of the electrical field does not vary

randomly with time but rather displays short periods (50-100

milliseconds) of stable topographical configurations followed

by a period of instability before moving into a new stable

configuration[8]. These stable topographic configurations,

known as microstates are considered the basic elements

that reflect the brain state over the given time interval

that the EEG was recorded. Although the same topographic

organization is not necessarily result of the same underlying

sources it is reasonable to assume that different distributions

of the electrical field in the scalp represent different brain

states.

Each state can be mapped into the N-dimensional sensor

space and then apply machine learning techniques in order

to find formed classes of spatial maps in this N-dimensional

space [15]. With denser electrode configurations and tak-

ing under consideration the volume conduction effect the

dimensionality increases without a necessary increase in the

descriptive power of the topographic map.
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In this paper we present a new method for identifying

stable topographic maps in the EEG. Our methodology uses

the LG graph to model and represent the topographic activity

at each time point of the EEG.In the next section we are

going to present methods for the characterization of the

spatial EEG information. Then, we proceed to describe the

building blocks of our methodology and their application in

the analysis of ERPs. Finally, results of our methodology in

real EEG data are presented.

II. EEG MICROSTATES

The microstate model considers the EEG or ERP data as

a series of momentary spatial distributions of the electrical

field in the brain or as they are also known topographic maps.

It has been noted in [8] that these maps remain stable for

a certain period of time and then they change abruptly to a

new configuration. The assumption made is that these time

segments reflect parts of information processing or in other

words functional microstates of the brain. Change from one

stable microstate to another indicates an alteration of the

functional state of the brain. Such microstates can be seen

as the atomic elements of higher cognition [7]. The series of

such microstates does not mean though that the information

processing is sequential. Each state may encode different

parallel processes acting in synchrony.[7].

Under this spatial-oriented approach a measure that is ref-

erence independent and describes the topography of the EEG,

was proposed by Lehman, called Global Field Power(GFP).

GFP can be considered as the standard deviation of the is

defined as following:

GFP=

√

∑
N
i=1(vi− v̂)2

N
(1)

where vi is the measurement at electrode i and v̂ is the

mean over all electrodes. GFP is a measure of the flatness or

hilliness of the topographic map. It takes high values when

the map presents high peaks or valleys and low values when

the resulting map is flat [13].

In order to identify periods of stable topographic config-

uration we need a measure of how similar or different two

topographic maps are to each other. A similarity measure

was proposed in [8] to compare different maps. The Global

dissimilarity measure (GMD) defined the distance between

two maps in the sensor space and is defined as following:

GDM =
1

N

N

∑
i=1

vi− v̂
√

∑
N
i=1(vi−v̂)2

N

−
ui− û

√

∑
N
i=1(ui−û)2

N

(2)

Where vi and ui represent the measurements in the elctrode

i of the two maps respectively. Essentially, this measure

represents the distance between two topographic maps by

treating them as vectors. Also, TANOVA [13], a non para-

metric randomization test, has been proposed and used

widely in order to identify significant different maps between

conditions. These two measures, GFP and GDM can be

treated independently in order to examine the topographic

variations of the brain response over time.

As the EEG technology advances, the number of recording

electrodes increases and so does the dimensionality of the

problem. Down-sampling on the number of electrodes is a

common method used in several studies [13].

In our approach we use a segmentation algorithm in

order to identify the significant regions of activity in each

map. Then we use the LG graph to represent the major

characteristics of this map, while keeping the local infor-

mation. This way we effectively transform the problem of

microstate identification into a graph matching problem, a

domain where the LG graph presents significant advantages,

as we will see below.

III. METHODS

A. Segmentation

The first step is to obtain the topographic maps for each

point in time from the multichannel EEG. We remove the

mean from each channel and then for a given time point we

colorcode the values in the electrodes, representing minimum

with blue and maximum with red and the natural neighbor

interpolation method is used to interpolate the values in the

space between the electrodes [1], [3].

Our goal is to group channels into regions that present

similar activations. The watershed segmentation algorithm

uses the local minima in the image as initial points(seeds)

and then the regions are growing from each seed, until the

borders of one region reaches the limits of another [10]. In

our case we use a slight modification of the algorithm where

the background activity is marked with seeds, in order to

avoid the regions to grow into areas with background(small)

activity. Figure 1(c), displays the result of the watershed

algorithm, while in Figure 2 we can observe the marked

watershed results.

The main advantage of this algorithm is that it creates

compact regions that represent similar activity without using

any prior knowledge about the number of regions that we

expect to produce. Since we are interested in the spatial

structure of the electric field we normalize each map by its

GFP before applying the watershed algorithm. The segmen-

Fig. 1. The segmentation procedure and results. Figure 1a shows the GFP
normalized topographic map. Figure 1b shows the absolute normalized map
used for the segmentation. Figure 1c displays the segmentation result.

tation step provides a natural way to reduce the dimensions

of our problem while remaining in the sensors space. Next

we present the LG Graph and its application for the spatial

analysis of the EEG.

B. Local Global Graph

LG Graph (LG graph) is a well known technique that

has found many applications in computer vision[2]. The



LG graph extends the information that the graph holds by

attaching local information about each node. Initially, it

was used for image understanding applications. The local

graph is a graph describing the shape of the region and

holds information characterizing the region, such as its color.

Along with the centroid of each region, this local graph

is used as a node of the greater graph representing spatial

relations between segments of the image.

The relationships between the nodes represent the geomet-

rical relationship between regions of the image. In order to

further simplify the relationships between the regions of the

image, a node can be arbitrarily chosen and only connections

to this node can be taken under consideration. The idea

behind this simplification is that we can full characterize the

geometrical relations between nodes by keeping only their

relations to a common reference and discard the redundant

information. In the next section we provide the detailed

steps for the calculation of each graph in the context of

topographical maps.

C. Global Graph

Each region in the image is a node of the Global graph and

is represented by its centroid. The centroid that characterizes

each region is calculated as the center of mass of the region

as following:

centroid(x,y) =

(

∑x,y∈R x∗ I(x,y)

∑x,y∈R I(x,y)
,

∑x,y∈R x∗ I(x,y)

∑x,y∈R I(x,y)

)

(3)

where the I(x,y) is the value at the point x,y belonging to

the region R of the map. The centroid is directly affected by

the field distribution in the given area and is representative

of the underlying field. Therefore, changes of the field inside

a region will be reflected in the centroid.

Analysis of the centroid has been used under the GFP

context as it prove to be less sensitive to noise and encompass

the information from the surrounding electrodes[17]. The

main difference in our approach is that we do not limit our

analysis only in the extrema of the negative and positive

fields identified in the electrode map but we use all the

regions identified by the segmentation step to construct the

global graph. The proposed scheme can handle both local

(region) and global (relative position of regions) information

and can be represent the spatial distribution of the electric

field in an efficient way.

When all the centroids of the image segments are cal-

culated then the central electrode Cz is arbitrarily chosen

as the reference node of the graph. This reference node is

connected to all the centroids and the relative distance and

angle between two consecutive centroids is calculated.

D. Local Graph

We use the local graph to model each region of the

topographic map generated by the segmentation step. The

local graph does not contain only point information derived

by the location of the centroid but also the detailed region

information. As we mentioned earlier, different types of

information can be effectively described and queried by the

local graph. In our case, since we are interested in the char-

acterization of the microstates, each local graph keeps the

number of electrodes included in the region, the amplitude

and power of each electrode along with the amplitude and

power of the whole region. The local graph therefore is

defined by the local relations of the members of each region.

We can use this information to detect changes inside

the region and provides a compact local descriptor of the

topographic map.

IV. LG GRAPH SIMILARITY

Our goal is to detect and identify microstates that compose

the time course of the multichannel EEG. Using the LG

graph to characterize the topographic maps of multiple

time points, we need a measure to quantify the similarity/

dissimilarity between two LG graphs. We approach this

problem using a two level evaluation of the distance between

maps. We use the global graph defined above to evaluate the

structural similarity/ dissimilarity between topographic maps

and then at a second level we can compare the individual

local graphs.

A. Local similarity

The local graph is used to determine the corresponding

regions/ nodes between the graphs. We determine the percent

of overlap between two regions using the Jacard similarity

measure as following:

Sregion =
regiona∩ regionb

regiona∪ regionb
(4)

This measure displays the degree of overlap between two

regions. The amount of overlap is not enough to determine

the similarity of two regions since we have to take into

account the similarity of the two local electrical fields.

Although the centroid gives an indication of the underlying

field, we need to check the local graph to detect local regional

changes in the field distribution. We use the cosine similarity

to calculate the similarity between the field amplitude vectors

of the common region of the two local maps, as following:

S f ield =
∑i∈regionR

a
i ∗R

b
i

√

∑i∈edges(R
a
i )

2 ∗

√

∑i∈region(R
b
i )

2
(5)



B. Global similarity

The distance between two global graphs can be calculated

by comparing the differences between the angles formed by

the edges of the graph, connecting the reference node and

each centroid. We move the center of the x-y axes to the Cz

electrode and we calculate the angle of each edge from the

positive x-axis. By comparing the re-referenced angles, we

can calculate the distance between two global graphs and

at the same time obtain the node correspondence between

the two graphs. We construct the vector V which holds the

angle, the distance from the centroid and value at the centroid

in order to describe the global relation of each region. The

structural similarity between the two graphs is calculated as

the cosine similarity as in equation (5) This measure takes

values from [-1,1] where 1 means that the two global graphs

are reversed.

C. Comparing LG Graphs

To determine the total graph similarity we combine both

local and global information. Recall, that we are using the

centroid value as an indication of the field configuration for

a given region, so a high global similarity reflects both the

structural similarity of the topographic maps as well their

field configurations. We weight the global similarity by the

ratio w defined as w= #matched nodes
max(nodesgraphA,nodesgraphB)

derived from

the matching of the local graphs. The following function is

used to calculate the graph similarity for different values of

the global graph:

Sgraph = w∗Sglobal (6)

If we want to compare the behavior of specific regions the

local graph provides the necessary flexibility to constrain the

analysis in these regions.

V. RESULTS

We applied the LG graph methodology in an ERP data

set obtained from a single healthy subject performing an

auditory oddball experiment. 27 channels were used to record

the EEG and the data were sampled at 1024Hz. Each trial has

1300 samples and the auditory stimulus occurred at 600ms.

We used 40 trials that correspond to the target stimuli in

order to generate the average ERP in each channel. A detailed

description of the full dataset can be found in[18].

We calculated the average ERP of the wide-band signal

and for each time point we applied the LG graph method-

ology. A hierarchical clustering algorithm was employed

in order to find stable topographic maps and perform a

first evaluation of our methodology. We decided to keep 5

clusters. The merging distance fell bellow a certain thresh-

old(t = 0.30) when merging further. The threshold was set

empirically based on the current dataset. The fifth cluster

was formed last and has members with low similarities that

probably represent transitional states. The extracted graphs

TABLE I

VARIANCE EXPLAINED BY MICROSTATES

variance ex-
plained %

Microstate
1

Microstate
2

Microstate
3

Microstate
4

Microstate
5

Prestimulus 36% 28% 7% 17% 12%

Poststimulus 29% - 31% 19% 14%

and can be seen in Figure 2-row a and b, where the maps and

the resulting graphs are displayed accordingly. In Figure 2-

row c, the explained GFP from each microstate is presented

in time.

During the pre-stimulus we can observe an interesting

pattern where microstate 1(cyan) and microstate 2(magenta)

alternate each other in frequencies that can be identified

as theta band. Microstate 2 completely vanishes from the

post-stimulus period, while the microstate 3(green) emerges

right after the stimulus. Microstate 4(blue) is active for the

period before the actual P300 peak that occurs around 950

-1100ms. More specifically, for the duration of the P300

peak only microstate 1 is active. This is in line with other

studies on the same data, which indicated that the evoked

activations, represented in the average ERP have frontal and

parietal topographies[18]. Finally, microstate 5(red) is active

for small periods of time both prestimulus and postistimulus

and probably reflect transitional states where the GFP is low.

Table I summarizes the microstates duration for the pre

and post-stimulus period.

VI. CONCLUSION

We presented a new technique for the spatial analysis

of the EEG using LG graphs. The LG graph provides an

alternative representation of the spatial characteristics of the

EEG that enables the identification of topographical patterns.

Modeling each segmented map using the LG graph

methodology, we transform the problem to from the channel

space to a LG graph matching problem. We take advantage of

the hierarchical properties of the LG graph and we simplify

the matching procedure significantly, without sacrificing the

descriptive power of our features. A major advantage of

this methodology is that the LG graph is flexible enough to

incorporate different local and global measures at the same

time, a fact that allows for different queries and views in our

data.



Fig. 2. Row a.Four stable maps identified in the average ERP. The nose is in the top of the figure. The bar next to each map represents their color label.
Row b displays the corresponding LG graphs. Row c displays the distribution of the microstates in time.

Future work involves the further evaluation of the method-

ology and its application to single trials and incorporation of

synchronization and time-frequency measures.
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