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Abstract— Biosimulation researchers use a variety of models,
tools and languages for capturing and processing different
aspects of biological processes. However, current modeling
methods do not capture the underlying semantics of the
biosimulation models sufficiently to support building, reusing,
composing and merging complex biosimulation models originat-
ing from diverse experiments. In this paper, we propose an on-
tology based and multi-layered biosimulation model to facilitate
researchers to share, integrate and collaborate their knowledge
bases at Web scale. In particular, we investigate the semantic
biosimulation model under the context of the multi-scale finite
element (FE) modelling of the inner-ear. The proposed ontology-
based biosimulation model will provide a homogenized and
standardized access to the shared, semantically integrated and
harmonized datasets for clinical data (histological data, micro-
CT images of the cochlea, pathological data) and inner ear FE
simulation models. The work presented in this paper is analyzed
and designed as part of the SIFEM EU project.

I. INTRODUCTION

Scientific investigation is evolving in the direction of the
creation of large-scale, highly complex, multi-domain and
multi-scale scientific models and theories. The interpretation
of complex phenomena and the creation of scientific models
in these scenarios demand the systematic orchestration of
experimental design, experimental execution, observation,
data representation, data analysis and knowledge exchange.
In this work, we study the problem of multi-scale finite ele-
ment modelling of the inner-ear. Mathematical modelling and
simulation is particularly attractive as a tool in researching
the cochlea and its pathology as biopsy, surgical excision
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and other conventional techniques of pathologic studies are
not feasible without further impairing function [1]. However,
experiments and modelling done in the study of inner-ear
may cross different domains of expertise, may depend on
large collaboration networks and may involve large-scale
data outputs.
Recent advancement of technologies has given increasing
computational power to biomedical researchers for building
and managing complex biosimulation systems. However, as
their model and simulations grow in complexity, researchers
find it more difficult to share, manage, and edit their models.
The problem of sharing complex biomedical models becomes
severe with the lack of scalable standards for model represen-
tation and reuse: as a consequence many modellers cannot
readily share and build upon previously coded models. The
biosimulation community therefore has a growing need for
tools that will help them to more efficiently build, manage
and reuse their models.
In this paper, we discuss how Semantic Web technologies
can be applied in integrating different types of data associ-
ated with inner-ear models (physical, numerical, anatomical,
clinical), representing models parameters at different scales,
and representing the associated simulation outcome for each
case. Semantic Web technologies provide a mechanism for
representing and linking heterogeneous data, using Web
standards and a flexible and expressive data model.
Semantic Web technologies can provide a principled rep-
resentation which supports the description of data together
with its meaning in a machine interpretable way. The use
of a standardized data representation format based on Web
standards, and the construction of shared vocabularies and
ontologies support semantic interoperability of data across
models and systems. While a principled data representation
brings the basis for addressing the problems outlined above,
it demands the support of a complementary service infras-
tructure for allowing the capture, accessibility, analysis and
support in the interpretation of experimental data. This work
concentrates on the discussion of the representation aspect.
The work presented in this article is developed as part
of the SIFEM EU project1. The SIFEM project results in
the delivery of an infrastructure, which will semantically
integrate finite element simulation data with experimental
and clinical data, aiming towards the delivery of a robust

1http://sifem-project.eu
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multi-scale model of the inner-ear. This paper is organized
as follows: section II presents the challenges involved in the
creation of multi-scale finite element biosimulation models;
section III describes existing works on the use of ontologies
for finite element analysis and multi-scale integration of
biosimulation models; section IV describes the semantic
representation and its different conceptual model dimensions
for FE biosimulation experiments, which is followed by
section V, where we present the conclusions.

II. MULTI-SCALE INNER-EAR MODELLING

The creation of a realistic model of the inner ear function
and behavior is a complex scientific task which depends
on the understanding of different structures which crosses
the boundaries of different domains of expertise. The hear-
ing process involves the orchestration between anatomical
structures which have different scales and are governed by
different physical principles.

The cochlea consists of a coiled labyrinth, which is about
10mm across and has about 2.5 turns in humans, embedded
in the temporal base of the skull. It is filled with fluid and
divided into three main fluid chambers: the scala vestibuli,
the scala media and the scala tympani. The basilar membrane
(BM) is a structure that runs along the coil of the cochlea,
which separates the scala media and the scala tympani
chambers.

The motion in the cochlea is driven by the middle ear,
via a flexible window at the basal end of the upper fluid
chamber, and the pressure at the basal end of the lower fluid
chamber is released by another flexible window. It is thus
the difference in pressure between the upper and lower fluid
chambers that drives the BM.

The organ of Corti sits on top of the BM, and contains
two types of hair cells (HC): (i) inner hair cell (IHC), which
converts the motion of the stereocillia into neural impulses
that then pass up the auditory pathway into the brain and (ii)
outer hair cells (OHC) within the organ of Corti that play a
more active role in the mechanics of the cochlea.

The physical models describing distinct structures within
the inner ear follow different physical descriptions which
are intrinsically interdependent. The vibration model of the
basilar membrane is different from the mechanical model
for the organ of Corti and from the mechanical and elec-
trical behavior of the hair cells connected to the OC. The
creation of a model for the cochlea mechanics depends on
the composition of different physical models, with different
supporting clinical data, combining efforts from groups with
different domains of expertise. The challenges for multi-scale
biosimulation are described below.

Interoperability & Reproducibility: Multi-scale
biosimulation modelling depends on the composition of
models crossing different domains of expertise. Reuse of the
biosimulation results by other researchers typically involves
the reproduction of the experiment using information
gleaned from the associated research paper. Where data is
made available from the original experiment, differences in
data representation define a barrier to reproduction, review,

comparison and reuse.

Data Integration & Accessibility: A concrete example
of multi-scale modelling in the inner-ear domain is the
integration, between simulations for the basilar membrane
model, with the mechanical model for the organ of corti
developed by other researchers with the model for the hair
cells. Typically, the experimental and model data are siloed
in different environments, for different research groups,
in heterogeneous (possibly poorly structured) formats. In
such a scenario, simple tasks such as finding specific data
from previous simulations can only be achieved, in general,
by reading, analysing and replicating associated publications.

Validation & Data Analysis: As models get more complex,
as is the case with multi-scale simulation models, the
complexity of the simulation process drastically increases,
as the number of possible combinations of simulation
parameters increases. Different parts of the simulation
model need to be validated and supported by experimental
and clinical data, which need to be integrated into the
simulation workflow.

The challenges described above can be addressed by
the provision of a principled, standards-based representation
model which is able to represent biosimulation data unam-
biguously in both a human and a machine interpretable way.
The construction of a representation model for biosimulation
experiments are particularly challenging as the representation
model needs to cover different model domains.

Figure 3 shows the relationship between the core elements
involved in a multi-scale cochlear mechanics model and their
relationship with a semantic conceptual model (SCM). From
the simulation perspective, the conceptual model supports
the communication between different components of the
multi-scale model. The left side of the picture shows the
communication between the simulation output of the basilar
membrane model as an input to the organ of Corti model,
which communicates its output to the hair cells model. From
this point, the communication from the HC simulation is
propagated back to the OC and later to the BM, as an iterative
feedback mechanism.

In a loosely coupled simulation model the output of
one component is sent as input parameters and boundary
conditions to the next level. The semantic model in this case
integrates under the same ontology variables and parameters
involved in the input and output of the simulation, facilitating
the composition of different models.

Experimental and clinical data (pure tone audiogram, otoa-
coustic emissions, echocg, among others), already integrated
into the same semantic conceptual model, are used as input
parameters for the simulation model or in the validation
of the simulation output. Geometrical data extracted from
histological sections and microCT images are also integrated
into the same model.

By using a machine processable and structured repre-
sentation, algorithms can be used to support the automa-
tion of the data analysis and model validation, supporting



the experimentation with different parameters, mathematical
models in the simulation process (bottom part of Figure 3).
Additionally, domain experts can enrich the existing domain
knowledge by providing explicit links to information in
the literature, or by persisting their analysis into the same
integrated model.

Section IV discusses the representation dimensions in
details.

III. RELATED WORK

This section focuses on the description of related work
in two domains: ontology-based approaches to model finite
element simulations and multi-scale biosimulation models
integration.

A. Automated finite element analysis with an ontology-based
approach

In [2] an ontology-based framework to increase finite
element modelling (FEM) reliability is proposed for auto-
mated finite element analysis (FEA). The proposed ontology
for automated FEA is supported by a hierarchical approach
to make transfer formats for data, for information and for
knowledge so that human intervention is not required to
rebuild data/information/knowledge lost in the transfer. It
uses a three-stage automated FEA method used in problem
definition (for artifact markup), in problem formulation (for
domain knowledge re-use) and in the solution routine (for
the automation of FEM analysis). In order to enable data
exchange between designers and analysts, two OWL encoded
ontologies were developed namely a design domain ontology
and a FEA ontology which represents a generic FEA activity.

B. Multi-scale integration

Multi-scale model integration refers to the merging
of biosimulation models across several size scales, from
cellular to tissue level, or across multiple time scales.

Gennari et al [3] took three different biosimulation models
of the heart, at three different scales i.e. a cardiovascular
fluid dynamics model, a model of heart regulation and a
sub-cellular model of the arteriolar smooth muscle, and
built a lightweight ontological framework, called Applica-
tion Model Ontology (AMO), using small subsets of the
reference ontologies, to annotate these biosimulation models
semantically and to map between matching concepts. To
merge computational models of biological processes into
reusable, multi-scale models, two reference ontologies were
used, namely the Foundational Model of Anatomy (FMA) [4]
and the Ontology of Physics for Biology (OPB) [5] (which
are respectively a reference ontology of human anatomy
and an ontology for the physics of biological systems). The
researchers were then able to address the question of how
heart rate and blood pressure depend on calcium uptake into
arteriolar smooth muscle cells, a question that could not be
answered using one biosimulation model alone.

Fig. 1. Semantic Web representation stack.

IV. SEMANTIC REPRESENTATION

The provision of a machine-interpretable semantic rep-
resentation for multi-scale FE biosimulation experiments
depends on two main dimensions: (i) the construction of
a comprehensive conceptual model which describes the
entitites, attributes and relationships of the FE biosimula-
tion experiments domain including all associated dimensions
(physical, mathematical, anatomical, among others) and (ii)
the use of a standardized data model which supports a se-
mantic representation of the conceptual model and associated
instance simulation data. The next subsections describe these
two dimensions:

A. Standardized Semantic Data Model

Data interoperability can be achieved by defining the se-
mantics of the content consistently across the heterogeneous
data sources. The aim of SIFEM project is to semantify
the clinical inner-ear and biosimulation data and models
using Semantic Web technologies and standards, making the
information machine understandable and processable.

Figure 1 shows the Semantic Web stack2, which is a
hierarchy of languages and technologies, where each layer
exploits and uses capabilities of the layers below. The
bottom layer, Uniform Resource Identifier (URI) represents a
naming protocol for uniquely identifying Web resources. The
Extensible Markup Language (XML) layer with the XML
namespace and XML Schema definitions ensures a common
syntax is used in the Semantic Web.
Generally, biomedical data resources on the Web are dis-
tributed. Consequently, the description of resources should
be encoded in a way that facilitates integration from a
large number of sources. On the top of the URI referencing
mechanism and XML document exchange mechanism, the
Resource Description Framework (RDF) layer provides a
graph-structured data format to encode descriptions about

2http://www.w3.org/2007/03/layerCake.png



Web resources. RDF is the data model for Semantic Web
data. Having interlinked RDF data sets, mechanisms for
querying the RDF data are necessary. SPARQL (a recursive
acronym for SPARQL Protocol and RDF Query Language)
is a declarative query language, which allows for specifying
queries against data in RDF. SPARQL is the standard query
language for semantic data. The RDF graph-based encoding
of Web resources covers only parts of the meaning of the
data. RDF(S) constructs allows modelling class or property
hierarchies. Data may require logic-based representation con-
structs. The Web Ontology Language (OWL) is a logic-based
language which suport inferences, i.e., drawing conclusions
based on existing facts. The Rules Interchange Format (RIF)
allows for encoding and exchanging logical rules. Logical
consequences can be inferred from a set of axioms with the
help of logical reasoners.
The Semantic Web technologies can improve the knowledge
representation and integration of the clinical data by provid-
ing standards to represent the data at Web scale. Moreover,
such semantic representation supports intelligent knowledge
processing such as reasoning, semantic approximation and
alignments.

B. Multi-scale Conceptual Model

The domain knowledge can be represented as ontologies
using the layered structure representation Figure 1). The
representation of the cochlear mechanics biosimulation ex-
periments is dependent on different domains. This section
describes each domain dimension and existing ontologies for
its representation.

1) Physics Model: The physics model layer allows a
principled description of physical quantities, their relation-
ships and associated units involved in a FE biosimulation
experiment. The Ontology of Physics for Biology (OPB) [5]
is an ontology focused on the description of physics for
biosimulation from a foundational perspective. The Semantic
Web for Earth and Environmental Terminology (SWEET)
[6] [7] is a group of ontologies which describe physical
quantities and units, among other concept domains. Exam-
ples of SWEET classes are: Pressure and Density ; OPB
class examples include: Physical entity, Physical property
and Physical state.

2) Algorithmic & Finite Element Model: This layer pro-
vides the description of the algorithms which are used
within a given simulation setup, including the algorithms
input parameters, a categorization for the algorithms and the
interrelationships between different algorithms. The Kinetic
Simulation Algorithm Ontology (KiSAO) [8] categorizes and
describes the most common biosimulation algorithms. This
layer also descries the main concepts in the FE domain (e.g.
Mesh, boundary conditions). On the FE domain, Sun et al.
[2] developed a Finite Element Analysis ontology which
contains the basic concepts of finite element models. The
finite element modelling markup language (femML) [9] is
an attempt to address the problem of data representation and
exchange in the finite element modelling (FEM) domain.

Fig. 2. Representation dimensions for FE biosimulation models.

Fig. 3. SIFEM Multi-scale cochlear model and semantic integration
between the different scale components.

3) Material Properties Model: The Materials Ontology
[10] serves as a base to integrate heterogeneous materials
information resources (such as databases, computational sim-
ulations, documents and equation solvers) mapping concepts
between these resources in order to enable more flexible
search and interoperable representation for materials infor-
mation. The design of this ontology is discussed in [10]
followed by an example of its application to exchange data
from three well known thermal property databases.

4) Data Analysis Model: This dimension of the concep-
tual model provides a symbolic description of the simu-
lation output, where the symbolic features extracted from
the numerical results are classified under a data analysis
ontology. Value ranges, maxima, minima, derivative, function
zeroes are examples of values which can be used to describe
the numerical output of an experiment. This allows the
description of an observed behavior of a simulation experi-
ment in a machine-readable manner so that researchers can
answer questions such as “Which model displays a behavior
matching my experimental data?” The terminology for the
description of dynamics (Teddy) is a data analysis ontology
which provides a set of function analysis features [8].



5) Geometrical & Topological Models: FE biosimula-
tion experiments use geometrical data associated with the
anatomical structures The connection between the symbolic-
level and the geometrical-level structures is still an area of
research where there is a lack of standardized solutions.
3D models are digital representations of objects that can be
processed by computer applications [11] which can be used
to represent objects or phenomena such as electromagnetic
fields. Current 3D modelling systems handle the geometric
representation of digital shapes (using shape analysis and
segmentation) but do not provide a symbolic (semantic)
description. In [12] the development of a Semantic Web
environment, Java-based, prototype for 3D annotation called
be SMART (Beyond Shape Modelling for Understanding
Real World Representations) is described. More specifically,
this system performs the geometric-topological inspection
and semantic structuring and annotation of 3D shapes using
metadata from the Common Shape Ontology.

6) Coordination & Provenance Model: Provenance is the
information about artefacts, processes, and agents involved
in producing a piece of data or thing, which can be used
to form assessments about its quality, reliability or trustwor-
thiness. PROV-O3 is a specication, promoted by the World
Wide Web consortium, for recording the provenance of web
resources. The PROV-O ontology defines a model to enable
the interoperable interchange of provenance information in
heterogeneous environments such as the Web. Prospective
provenance descriptors are used on the scope of this project
to describe biosimulation experiments, while retrospective
provenance descriptors describe the actual execution flow of
the experiments.

7) Mathematical Model: Mathematical objects are a fun-
damental element in the description of biosimulation ex-
periments. Explicitly representing mathematical knowledge
can enable the comparison between the mathematical models
behind different experiments, facilitating their reuse. There
are two main initiatives for standardizing the representation
of mathematical objects: MathML and OpenMath. MathML
focuses on the syntactical representation of mathematical
objects and its presentation. MathML allows the OpenMath
terminology to be embedded inside a MathML structure.
OpenMath aims at encoding the semantics of mathematical
objects by maintaining an extensible Content Dictionary
mechanism.

8) Anatomical Model: The Foundational Model of
Anatomy (FMA) is a reference ontology for anatomy, which
satisfies fundamental requirements for ontological represen-
tation of human anatomy [4], representing anatomical objects
and their relationships. An example of an FMA class is
Basilar membrane of the cochlea.

V. CONCLUSION

In this article, we have identified the challenges in-
volved in integrating and automating multi-scale biosimula-
tion models. In order to address these challenges a principled

3http://www.w3.org/TR/prov-o/

multi-layered semantic model was discussed. This model is
grounded on existing ontologies.

The ontologies described in this paper provide a way
of representing and annotating the elements of the SIFEM
project conceptual model in a machine-processable, unam-
biguous, standardized representation format which supports
the reuse, access to, and the semantic interoperability of,
heterogeneous data across models and systems. The princi-
pled semantic representation of the biosimulation and ex-
perimental data enables the reproducibility, integration and
reusability of different biosimulation experiments and the
automation of experimental analysis.

Future work include extending and refining the existing
conceptual model and the development of the associated
knowledge services, which will use the integrated data under
the semantic conceptual model to support the multi-scale FE
simulations.
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