
 
 

 

  

Abstract—Audiovisual speech integration is reflected in the 
electrophysiological N1/P2 complex. In this study, we analyzed 
recordings of electroencephalographic brain activity from 28 
subjects who were presented with combinations of auditory, 
visual, and audiovisual stimuli, using single trial analysis based 
on an independent component analysis procedure. We found 
that, with respect to the N1/P2 complex, single trials across all 
subjects and all conditions could be separated into two groups, 
one with ‘typical’ responses having the same polarity as the 
average response and another one with ‘aberrant’ responses 
having opposite polarity. Furthermore, the number of aberrant 
responses in non-speech interpretation of auditory stimuli was 
significantly lower compared to speech, which may affect the 
N1/P2 complex in the ensemble average EP. 
 

I. INTRODUCTION 
UMAN speech is often audiovisual (AV) in nature as the 
auditory speech signal (A) is typically accompanied by 

visual lip-read information (V) in most natural settings. To 
determine AV interactions in speech processing, many 
studies use electroencephalographic (EEG) recordings of 
brain activity while listeners are presented with AV, A, and 
V speech stimuli [1,2-5], a procedure that allows researchers 
to interpret the resulting evoked potential (EP) differences 
between (AV–V) and A as an effect of AV integration 
[6,7,8]. In particular, such studies have shown that the 
auditory N1 (a negative peak approximately 100 msec after 
stimulus onset) and the P2 (a positive peak approximately 
200 msec poststimulus) EP components are modulated by 
lip-read speech [1-5].  

The typical procedure to analyze EPs is to ensemble 
average all responses obtained under each experimental 
condition, and then compare the polarity, amplitude, and 
latency of the resulting EP components across conditions. 
Averaging improves the signal-to-noise ratio in the recorded 
signals, which are invariably affected by extraneous activity, 
such as physiological artifacts and external noise. However, 
averaging does not provide information about the dynamics 
of the brain processes underlying the surface recordings. 
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Single-trial analysis, on the other hand, can provide 
information on the temporal evolution of the 
neurophysiological processes associated with the particular 
EP components under investigation. We have recently 
proposed a methodology for single-trial EP analysis [17] that 
focuses only on one particular EP component at a time and 
makes it visible in each single trial. Our method is based on 
independent component analysis (ICA) and the idea that 
activity resulting from an experimental stimulus is 
independent from neurophysiological artifacts and 
background brain activity [14,15,16]. The method allows 
studying the dynamic evolution of the underlying cortical 
generators that give rise to a specific EP component.  

In previous studies, the single-trial ICA approach revealed 
that a sub-set of single-trial EP components have an opposite 
polarity than the one observed in the ensemble average 
[9,12,13,17]. Since these atypical or ‘aberrant’ responses can 
distort the effective morphology of the measured average EP 
components as well as the location of the underlying 
intracranial sources [9], they should be taken into account in 
the analysis of any brain process under investigation.  

In this study, we employed unimodal (A or V) and 
bimodal (AV) stimulation, whereby listeners were presented 
with artificial sine-wave speech (SWS) [10] that was only 
perceived as speech by half of the participants and we 
investigated whether the N1/P2 complex is modulated by the 
speech- or non-speech interpretation of the stimuli.   

 

II. METHODS 

A. Subjects and Procedure  
Participants (28 undergraduate students, 8 males, 20 

females, age between 18 and 26 years) were seated in an 
electrically shielded, dimly lit, and sound attenuated booth at  
~70 cm from a 17-inch CRT monitor. SWS sounds, 
specifically the pseudo-words /tabi/ and /tagi/, were delivered 
through a computer speaker placed directly below the 
monitor. For visual stimuli, the size of the videos viewed 
subtended 14° horizontal and 12° vertical visual angle. 

Participants were evenly split (N=14) into a 'speech mode' 
(SM) and a 'non-speech mode' (NSM) group and trained 
accordingly. SM participants learned to perceive the SWS as 
speech through alternate presentations of SWS and their 
natural speech counterparts (twelve presentations of each 
stimulus). Listeners in NSM only heard the SWS sounds 
(also 12 times for each sound) while under the impression 
they were hearing two computer sounds. After training, none 

Speech Perception: Single Trial Analysis of the N1/P2 Complex of 
Unimodal and Audiovisual Evoked Responses 

George Zouridakis, Senior Member, IEEE, Martijn Baart, Jeroen J. Stekelenburg, and Jean Vroomen 

H 

978-1-4799-3163-7/13/$31.00 ©2013 IEEE



 
 

 

of the SM participants reported to have heard the sounds as 
speech. Next, EPs were recorded during six 10-minute blocks 
with short breaks in between. Across blocks, a total of 576 
experimental trials were delivered, of which 288 were 
unimodal (144 A- and 144 V-trials, 72 /tabi/ and 72 /tagi/ 
trials in each modality) whereas 288 were AV. Furthermore, 
144 AV trials were congruent (AVC with 72 AV/tabi/ and 72 
AV/tagi/) and 144 were incongruent (AVI with 72 
A/tabi/V/tagi/ and 72 A/tagi/V/tabi/). During the experiment, 
all participants were engaged in an unrelated visual task. 

 

B. EEG recordings 
  EEG activity was recorded at a sampling rate of 512 

Hz from 64 locations corresponding to the extended 
International 10-20 system, using active electrodes (BioSemi, 
Amsterdam, The Netherlands) mounted in an elastic cap. The 
EEG was referenced on-line through two additional 
electrodes; the active Common Mode Sense electrode (CMS) 
and ground (Driven Right Leg passive electrode; DRL). 
Electrooculographic (EOG) activity was recorded using 4 
additional electrodes (2 on the orbital ridge above and below 
the right eye and 2 on the lateral junctions of both eyes) 
referenced to the left and right mastoids. The EEG was 
referenced offline to an average of these mastoids and 
bandpass filtered (Butterworth zero-phase filter, 0.5 – 30 Hz, 
24 dB/octave). EPs were time-locked to auditory onset and 
the raw data were segmented into epochs of 1000 msec, 
including a 200-msec pre-stimulus baseline. After EOG 
correction [11], epochs with an amplitude > 150 µV at any 
EEG channel were rejected.  

  

C. Iterative ICA 
Independent component analysis [3] is a method for 

solving the blind source separation problem [7], which tries 
to recover N independent source signals, s = {s1,...,sN}, from 
N observations, x = {x1,...,xN}, that represent linear mixtures 
of the independent source signals. The key assumption used 
to separate sources from mixtures is that the sources are 
statistically independent, while the mixtures are not. 
Mathematically, the problem is described as x = As, where A 
is an unknown mixing matrix, and the task is to recover a 
version, u, of the original sources, similar to s, by estimating 
a matrix, W, which inverts the mixing process, i.e., u = Wx. 
The estimates u are called independent components (ICs). 
The extended infomax algorithm is currently the most 
efficient technique to solve this problem and relies on 
information theory and a neural network approach [1,4,7,8]. 

Our technique, termed iterative ICA (iICA), is an iterative 
implementation of this algorithm and is applied to a set of 
recordings consisting of L single trials obtained from N 
recording channels. Before processing, all single trials are 
lowpass filtered at 35 Hz. The procedure consists in the 
following steps: 

1. Compute an average EP from all single trials. 
2. Compute the ICA transform of all single trials, grouped 

in blocks of 10. 
3. Compute the absolute correlation value between the 

current average EP and the ICs in all blocks, within a 
predefined window Wr. 

4. Set to zero those ICs with correlation less than a 
predefined threshold rth . 

5. Compute the inverse ICA transform of the updated ICs 
back to the time domain, separately in each block. 

6. Shuffle the updated single trials around the entire set. 
7. Repeat steps 1 to 6 until a convergence criterion is met. 
 
The procedure can then be applied to the rest of the 

channels until all of them have been processed. However, in 
the present study we analyzed data only from the Cz channel 
as the N1/P2 complex in the raw data was maximized at Cz. 
The parameter values used were Wr = 50 – 250 msec 
poststimulus, which was consistent with the occurrence of the 
N1/P2, and rth = 0.15. For convergence, we accepted an 
absolute difference between successive estimates of the 
template |EPk – EPk+1| ≤ 0.005. Shuffling of the trials 
guarantees that each block will include different trials in the 
next iteration, and thus the resulting ICA system of equations 
will not be underdetermined. 

 

D. Analysis Procedure 
EPs were computed for each modality (A, V, AVC, and 

AVI), separately for the SM and NSM subgroups. The N1/P2 
complex was identified automatically in a window between 
50–250 msec poststimulus. In all datasets, the iICA 
procedure was able to identify two groups of single trials in 
which the N1/P2 had opposite polarity. When averaged 
together, the iICA-processed single trials of the same group 
resulted in two distinct partial EPs. We called ‘typical’ those 
responses in which the N1/P2-complex had the same polarity 
as in the ensemble average EP and ‘aberrant’ the ones in 
which N1/P2 had opposite polarity.  

 
 
Fig. 1.  Example of ‘typical’ and ‘aberrant’ single trial responses identified 
by the iICA algorithm, along with the resulting partial EPs. The classical 
ensemble average EP is also shown for comparison. 
 



 
 

 

We determined the proportion of aberrant responses for 
each participant in all conditions and submitted the data to a 
2 (Group; SM vs NSM) * 4 (Modality; A, V, AVC and AVI) 
ANOVA. 

 

III. RESULTS 
A characteristic example of typical and aberrant responses, 

along with the corresponding partial EPs is shown in Fig. 1. 
The classical ensemble average EP, labeled ‘EP average,’ is 
also plotted in the same figure for comparison. As it can be 
seen, both the N1 and the P2 components have opposite 
polarities, and the main effect of the aberrant responses on 
the ensemble average EP is to decrease the amplitude of both 
the N1 and P2 waves. 

 

Figure 2 shows two examples of selective averaging for 
congruent (AVC, Fig. 2, top) and incongruent (AVI, 
Fig. 2, bottom) EPs. In these plots, the original unprocessed 
single trial responses were first grouped and then averaged 
together based on the label (‘typical’ or ‘aberrant’) of the 

corresponding processed trials assigned by the iICA 
algorithm. Similar to what is seen in the iICA-processed 
single trials, both the N1 and P2 peaks have opposite polarity 
in the two partial EPs, whereas the polarity of later 
components is the same in all EPs. That is, components that 
are out-of-phase during the time window of the N1/P2 
complex, approximately between 50 and 250 msec 
poststimulus, become in-phase at the end of this stage of 
processing. Similar results were found for the non-speech 
mode EPs.  

Table 1 summarizes the proportion of single trials having 
aberrant N1/P2 polarity across the SM and NSM groups for 
A, V, AVC, and AVI stimulus modalities. The overall 
proportion of aberrant responses was larger for listeners in 
SM (.28) than in NSM (.22), F = 16.37, p = .027. 
Furthermore, there was a main effect of Modality as the 
proportion of aberrant responses was significantly higher for 
V than any other condition (p’s < .001), whereas we observed 
no statistical difference between the other levels of Modality. 

 
 

Table 1. Proportion of aberrant responses for all conditions in 
SM, NSM, and averaged across participants, with standard 
deviations in parentheses. Asterisks indicate significant 
differences where p < .001. 

Modality SM NSM Average 
A .24 (.21) .16 (.09) .20 (.16) 
V .38 (.04) .36 (.05) .37 (.04) 

AVC .25 (.18) .17 (.10) .22 (.15) 
AVI .24 (.18) .17 (.10) .20 (.15) 

 
 

IV. DISCUSSION & CONCLUSION 
The results presented in this paper are in agreement with 

previous findings of P2 component amplitude differences 
during processing of audiovisual speech and non-speech, 
specifically that the P2 amplitude may be larger for non-
speech (i.e., NSM in current study) than for speech (SM in 
current study) material [7]. Selective averaging revealed that 
the number of aberrant responses in non-speech interpretation 
of artificial stimuli is lower compared to speech, thus 
affecting the amplitude of the P2 component in the ensemble 
average EP. Our efforts are currently focused on localizing 
the source of the aberrant responses and defining the relative 
timing of the two partial EP peaks across the experiment.  

Taken as a whole, these results suggest that single trial 
analysis can shed more light on the generation of the N1/P2 
complex and its dynamic evolution. 
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Fig. 2.  Examples of selective averaging of congruent (top) and 
incongruent (bottom) audiovisual EPs in which unprocessed single 
trials are grouped and averaged together based on the membership 
label of ‘typical’ or ‘aberrant’ assigned by the iICA algorithm. The 
classical ensemble average EP is also shown for comparison. 
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