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Abstract— The Next Generation Sequencing platform, RNA-
seq provides quantitative expression data that exhibit distinctive
sequence patterns in the segments of the short-reads level and
are found useful in clustering of those segments. However, the
result does not reflect the functional chemistry of the non-
coding RNAs (ncRNAs). The functions of the ncRNAs are
deeply related to their secondary structures. Thus by exploring
the clustering in terms of structural profiles of the read block
segments rather than their sequence patterns would be essential
and useful. We proposed the QLZCClust (Quaternary Lempel-
Ziv complexity based Clustering) method which is an extension
to the popular Lempel-Ziv algorithm to compute pairwise
secondary structure distance. We applied QLZCClust on the
short-read segments obtained from the RNA-seq experient and
found that it can separate most miRNAs and the tRNAs.
Moreover, it can be used to detect structural similarities among
different classes of ncRNAs. We compared our algorithm with
the clustering of two other structural distance measures —
SimTree edit distance and RNAz based distance, and found
that our method performs superior.

I. INTRODUCTION

RNA-seq is a revolutionary technology for profiling tran-
scriptomes with which a very precise measurement of ex-
pression levels of transcripts and their isoforms can be
accomplished [1]. The expression data reveal a vast number
of possibilities to look into the transcriptomic details of an
organism that may or may not have a well-studied genome. In
most cases the reference genome is available and the analysis
pipeline starts by mapping the RNA-seq short-read sequences
to the genome [2]. In this study we limited our focus on the
RNA-seq experiments that dealt with the microRNAs, the
central topic for many therapeutic researches. The microRNA
like small non-coding RNAs are produced from microRNA
precursors, other structured RNAs and the dicers [3], [4].

The diversity of processing pathways urges the researchers
exploring how the short read patterns in RNA-seq datasets
relate to the processing of particular non-coding RNAs. For
instance, the characteristic mutual positioning with a 3’-
overhang of miR and miR* products that is a characteristic
feature for dicer cleavage, the anomalous 5 -overhang ob-
served for some microRNAs resulting from a distinct, dicer-
dependent two-step mechanism, and the dicer-independent
processing of mir-451 [5]. Therefore, we seek for profiles to
represent distinct pathways.
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There are several studies on the identification of the
profiles. The deepBlockAlign [5] introduced a two-step
approach to align RNA-seq read patterns with the aim of
quickly identifying RNAs that share similar processing foot-
prints. Overlapping mapped reads are first merged to blocks
and then closely spaced blocks are combined to block groups,
each representing a locus of expression. In the second stage,
block patterns are compared by means of a modified Sankoff
algorithm that takes both block similarities and similarities
of pattern of distances within the block groups into account.
Hierarchical clustering of the block groups separated most
miRNA and tRNA, and also identified about a dozen tRNAs
clustering together with miRNA. However, the method only
used RNA-seq short read sequence patterns in both the
stages and did not consider any similarity measure in terms
of the secondary structure. But, this structural similarity
measurement is important because most of the RNAs in the
dataset are structural. We, therefore, introduce QLZCClust, a
hierarchical clustering of the same block groups, but instead
of doing the sequence based distance calculation of the
segment pairs, we propose a new pairwise structural distance
measure — quaternary Lempel-Ziv complexity which is able
to enhance the clustering results in the structural domain.

In the following section, we describe in detail the proposed
QLZCClust scheme along with dataset preparation step. In
section III we summarize our experiment results and com-
paring our performance with clustering results by different
secondary structural distance metrics. Finally, in section IV
we conclude our manuscript with a guide to future research
direction.

II. METHODS

A. Dataset Preparation

We worked with the same benchmark Illumina se-
quencing datasets used by “deepBlockAlign” [5] au-
thors which is the Human_eb dataset [6]. At first, the
short-read sequences from the RNA-seq experiment were
mapped onto the reference genome using “segemehl”
[7]. The mapped reads are then divided into blocks
of consecutive reads using the ‘“blockbuster” tool [8]
(with parameters: distance=30, minBlockHeight=1,
minClusterHeight=50, scale=0.5). The expression
filter [5] was applied on the read block groups (segments)
to keep only those segments having more than one block,
at least 50 reads per group and the size range between 50
nt and 200 nt. At the end, 455 RNA read block segments
remained.



B. Pairwise Structural Distance of Read Block Segments

We extended the Lempel-Ziv (LZ) sequence comparing
algorithm [9] to compute pairwise secondary structural dis-
tance between two RNA segments. In the following section
we discuss LZ-complexity based structural distance calcula-
tion of two structures if the structures are represented using
only two symbols (i.e., the simpler binary case). Following
this section we introduce our Quaternary LZ-complexity
based structural distance measurements.

1) Binary LZ-Complexity: Before aligning two RNA
structures, we first converted the secondary structure of each
transcript from bracket notation to dot plot representation.
A dot plot is a two-dimensional graph in which there is a
dot (or symbol “17”) at position (i,j) if base at position i
pairs with the base at position j, otherwise there is no dot
(or symbol “07). Fig. 1 shows both the predicted secondary
structure and corresponding dot plot representation of the
read block segment 405. In the dot plot, if scanned downward
diagonally from left to right fashion and stopping at the
symmetric border line and re-scan from the next column
or row, we will get a binary sequence of Os and ls. In
the binary sequence a block of consecutive 1s represent a
stem of the secondary structure and block of consecutive
Os between two stems represent loop. We further replaced
each block of Os by a single “0” for simplicity. Thus, the
characteristic binary sequence for the structure of segment
405 is “0111101011111110”.
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Fig. 1. Dot plot representation of the secondary structure of the read block
segment (ID: 405). The lower right triangle contains the secondary structure
and the upper left triangle is its dot plot representation. The mapping of the
stems (consecutive base-pairs in the structure) are shown using the arrows
from the dot plot to the secondary structure plot. The scanning direction
starts from the lower left part of the upper triangle to its upper right part
(shown as the dotted triangular arrow heads).

LZ algorithm was introduced to analyze the complexity
of linear sequences by Lempel and Ziv in 1976 [9]. The
LZ complexity of a finite sequence is related to the number
of steps required by a production process that builds the
original sequence. Let S, QO and R be sequences defined
over an alphabet X, where |S| denotes number of symbols

in sequence S, S[i] denotes the i symbol of sequence S and

S[i : j] denotes the substring of S composed of the elements
of § between index i and j (inclusive). An extension R = SQ
of § is reproducible from S (denoted S — R) if there exists an
integer p < |S| such that Q[k] =R[p+k—1] fork=1,...,|Q]|.
That is, R can be obtained from S by copying elements from
the p™ location in S to the end of S. As each copy extends
the length of the new sequence beyond |S|, the number of
symbols copied can be greater than |S| — p+ 1. Thus, this is
a simple copy process of S starting from position p, which
can carry over to the added part, Q. For example, 011100
— 011100110 with p =3, 011100 — 01110011 with p =2
and 011100 — 0111000111 with p = 1.

A sequence S is producible from its prefix S[1 : j], which
is denoted by S[1: j] =S, if S[1: j] — S[1 :|S| —1]. For
instance, 01001 = 010010011 and 01001 = 0100100100
with p = 3. Thus, the production allows an extra different
symbol at the end of copy process which is not permitted in
reproduction.

Any sequence S can be built using a production process
where at its i step S[1 : h;_1] = S[1 : h;], assuming an empty
symbol produces the first symbol of S. An m-step production
process of S results in a parsing of S in which H(S) = S[1 :
h]-Shi+1:hy]-...-S[hy—1+1: hy) is called the history of
S and H;(S) = S[hi—1 +1: k] is called the i component of
H(S). For instance, 0-1-1-0-1:-0-1-1-0-0-0-1 and 0- 1 -
10-1011-00-01 are two different histories of the sequence
011010110001. If S[1 : A;] is not reproducible from S[1 : ~;_1],
then H;(S) is called exhaustive history. A history is called
exhaustive if each of its components (except possibly the last
one) is exhaustive. For example, the second history of the
sequence 011010110001 is an exhaustive history. Moreover,
every sequence S has a unique exhaustive history [9].

Let ¢y (S) be the number of components in the history of
S. Then the LZ complexity of S is ¢(S) = min{cy(S)} over
all histories of S. It can be shown that ¢(S) = cg(S), where
ce(S) is the number of components in the exhaustive history
of S.

Now given two sequences Q and S, and SQ is the concate-
nation of S and Q. By definition, the number of components
needed to build Q when appended to S is ¢(SQ) —¢(S). This
number will be less than or equal to ¢(Q) because at any
given step of the production process of Q (in building the
sequence SQ), we will be using a larger search space due to
the existence of S. Therefore the copying process can only be
longer which in turn would reduce the number of exhaustive
components. This can also be seen from the additivity of
the LZ complexity: ¢(SQ) < ¢(S) +¢(Q). Thus, the quantity
that how much ¢(SQ) — ¢(S) is less than ¢(Q) denotes
the degree of similarity between S and Q. For instance,
we are given three sequences S =0111101110111110, R =
0110110111111110 and Q@ = 0111011110111110. The ex-
haustive histories of the three sequences are:

Hg(S)=0-1-1110-11101111-10
Hg(R)=0-1-10-110111-111110
Hg(Q)=0-1-110-1111-0111110



Thus we can see that ¢(S) = c¢(R) = ¢(Q) =5. The exhaustive
histories of the sequences SQ and RQ would be:

Hg(SQ)=0-1-1110-11101111-100-111011110- 111110
Hg(RQ)=0-1-10-110111-111110-01110-111101-11110

Here, ¢(SQ) =7 and ¢(RQ) = 8. It took one more step in
the production process of RQ than SQ. The reason behind is
because Q is close to S than R. In this example, we can see
that S and Q share patterns 1111, 111 and 11111. We can
forumate the number of steps it takes to generate a sequence
Q from a sequence S by ¢(SQ) —¢(S). Thus if S is closer to
Q than R then we would expect ¢(SQ) — ¢(S) to be smaller
than ¢(RQ) — c¢(R).

There are several distance measures between two linear
sequences S and Q defined by Otu el.[10]. In our study we
used the following normalized distance function d(S, Q) :

c(50) —c(S) +<(05)~c(0)
Te(sQ) re(os) 7S

0 otherwise.

d($,0) =

2) Quaternary LZ-Complexity: The Binary LZ complex-
ity based distance measure does not consider base com-
positions into account in the stem sites, that is, it treats
characteristic sequences of AU or UA, GC or CG, GU or
UG pairs without their order of occurrences. In Quaternary
LZ complexity, we took the order of the base-pair compo-
sitions into consideration. We prepared the dot plot from
the secondary structure in the same way as was prepared in
the binary case, except that we assign in the (i, )" cell a
1 if (i,j) base pair is a AU or UA, a 2 if it is a GC or
a CG base pair, a 3 if it is a GU or a UG base pair, and
otherwise O to represent a no base pair. Then we extracted
the characteristic sequence out of the dot plot, and applied
LZ-complexity algorithm to deduce the pairwise normalized
distance score between two structures.

C. Clustering the Read-Block Segments

The structural distance measure, QLZC (Quaternary
Lempel-Ziv Complexity distance) defined in the previous
section was applied on the 455 read block segments to
perform a hierarchical clustering to find structural similarities
among different classes of non-coding RNAs, and explore
whether the method is capable of separating major classes of
structured RNAs. In the hierarchical clustering, we employed
the complete linkage as the agglomeration method.

D. Evaluating the clusters

The read block segments are compared to known annota-
tion of non-coding RNAs for overlaps. The known annotation
data sources we used are — (i) miRBase for microRNA loci,
(i1) tRNA loci from gtRNAdb, (iii) snoRNA loci from UCSC
annotation. Among the 455 read block groups, 437 had
overlap with eight classes of non-coding RNA — (i) miRNA,
(i) tRNA, (iii) rRNA, (iv) scRNA, (v) snRNA, (vi) C/D
box snoRNA, (vii) H/ACA box snoRNA and (viii) scaRNA.
The remaining 18 segments were not annotated in any of
the known data sources. The Rand Index[11] between the

ground truth clustering 7' of the given RNA segments and a
clustering result R can be employed for validation. Suppose,
TP represents the number of pairs of segments that are in
the same cluster in 7 and also in the same cluster in R, TN
denotes the number of segment pairs that are in different
clusters in T and also in different clusters in R, F'P represents
the number of segment pairs that are in different clusters in
T set, but are in the same cluster in the R set. Finally, the
FN represents the number of segment pairs that are in the
same clusters in the 7 set, but are in the different cluster in
the R set. Thus, the Rand Index is defined in Equation 1.
7 TP+TN ]

~ TP+FP+FN+TN &
The Rand Index lies between O and 1. The index scores close
to 1 indicate better performance of the clustering algorithm,
because it indicates how close the clustering result is to the
ground truth.

III. RESULTS AND DISCUSSION

Fig. 2 illustrates the dendrogram after applying the hierar-
chical clustering algorithm of the 455 block segments from
the Human_eb dataset based on the Quaternary LZ distance
measure. It can be seen in the dendrogram that our proposed
distance measure can clearly separate two broad classes of
non-coding RNAs — tRNA and miRNA. We highlighted these
two branches with blue and red boxes respectively.

There are some significant clusters having tRNAs, snoR-
NAs or unannotated segments clustering together with mi-
croRNAs. An earlier study discovered the fact that there
is a set of individual and characteristic tRNA-derived frag-
ments which are actively derived from mature tRNAs by
specific endonucleotic cleavage or exonuclease digestion by
a number of enzymes [5], [12]. In addition, it was shown
that dicer-dependent small tRNA fragments, along with other
small RNAs from a number of non-miRNA sources, can
potentially bind to Argonaute complexes and thereby unfold
trans-silencing capacities [4]. Therefore, we examined fifteen
tRNAs that clustered within the microRNA cluster. By taking
a closer look at these candidates, we identified three of these
have been reported in literature[12].

We performed hierarchical clustering with complete link-
age using several other structural distance measures. We ap-
plied the SimTree edit distance measure by Eden et al. [13],
which takes into account secondary structure similarities in
addition to sequence similarities. It first transforms the given
two RNA secondary structures into labeled trees and then
computes the distance between the two trees resulting in
a similarity score. We also applied RNAz 2.0 [14] each
of the pairs and obtained the mean z-score and structure
conservation index (SCI). We first used the SCI as the
distance metric, then combined the mean z-score and the
the SCI score to deuce a new distance score which is equal
to {(1 —mean z-score) + SCI}. The final score lies between
0 and 2, where a pairwise structure distance score closer to
2 indicates high similarity between the two structures.

In order to investigate the separability of the clustering
based on these pairwise structural distance measures, we
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Hierarchical clustering results on the 455 block segments based the QLZ distance measure.. The leaf labels are shown in different colors and we

put the color legends on the top-left corner. It can be found that if we cut the dendrogram to get two clusters, we can clearly separate two broad classes

of non-coding RNAs, namely miRNAs and tRNAs.

TABLE I
RAND INDICES OF DIFFERENT HIERARCHICAL CLUSTERINGS

Distance Metric Used Rand n(miRNAs) n(tRNAs)
Index (of 193) (of 157)

Binary LZ distance 0.19 41 113

SimTree edit distance[13] 0.22 37 129

RNAz SCI distance[14] 0.25 100 76

RNAz mean-z score & SCI 0.28 99 88

based distance[14]

Quaternary LZ distance 0.57 127 138

computed the Rand Indices for each of the clustering results
focusing on how well each can separate the two broad
classes of transcript segments — miRNAs and tRNAs. Table
I shows the Rand Indices for each of the clusterings along
with how many miRNAs and tRNAs could these clusterings
group correctly in the “n(miRNA)” and “n(tRNA)” columns
respectively. Here we can see that QLZC based distance
measure that we proposed here performs better than the other
distance measures (127 out of 193 miRNAs, 138 out of 157
tRNAs were grouped correctly, thereby the accuracy of our
QLZCClust is about 76%, with a rand index 0.57).

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this manuscript we presented an alignment-free pairwise
secondary structure distance metric — Quaternary Lempel-Ziv
Complexity distance which can be used in the hierarchical
clustering of the RNA-seq read block segments to partition
them in structural dimension. It opens up an opportunity
to identify structural similarities among different classes of
structural RNAs and essentially will help the researchers to
retrieve structural motifs from the given set.

B. Future Works

There are several future research directions worth pursu-
ing. The proposed distance measure could be employed in
clustering to effectively partition different classes of non-
coding RNAs transcripts and also to identify novel non-
coding RNAs.
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