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Abstract— Chemical Reaction Network (CRN) models based on
the mass-action law play an important role in the life sciences,
since they can be used to describe dynamical processes of
interest in many fields of chemistry and biology. A fundamental
challenge related to this kind of systems is represented by the
lack, within the framework of Systems and Synthetic Biology,
of a general methodology to design control systems for CRNs.
The main issue addressed by this work is the development
of a general methodology for designingembedded feedback
control schemes for an assigned CRN, i.e. controllers that
are themselves realizable through a CRN. In particular, we
illustrate the effectiveness of the proposed approach by design-
ing a proportional feedback controller for a well-characterized
biochemical system.

I. I NTRODUCTION

Chemical Reaction Networks (CRNs) obeying mass-action
law play an important role in the context of life sciences,
since they represent a convenient and concise way to model
processes of interest in chemistry and biology. The seminal
papers by Feinberg [1],[2] show that any CRN can be
equivalently described by a set of nonlinear differential
equations. In particular, a CRN whose kinetics is governed
by the law of mass action can suitably model characteristic
behaviours, like biological switches and cell fate decision
[3], [4], [5], since it may possess a finite number of isolated
equilibria [7].

Compared to other application fields, the development of
controllers for CRNs is greatly hampered by the difficulty
in interfacing the system with controllers based on conven-
tional technologies and the impossibility of exploiting the
well-assessed and general methods available from System
and Control Theory [6]. Such considerations, have led us
to the conclusion that a general methodology to realize
an embeddedCRN-based controller may be based on the
realization and interconnection of some elementary building
blocks made up of CRNs, such that the interfacing issues
can be easily overcome.

This paper deals with the problem of designing and realizing
a proportional output feedback controller for a single-input
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single-output (SISO) CRN. In particular, since the imple-
mentation of a classical proportional output feedback control
scheme requires a) the computation of the error signal and
b) the amplification of the error, a possible way to realize
such modules via CRNs is discussed.

The paper is organized as follows: in Section II some
essential concepts from CRN theory are reviewed. In Sec-
tion III the proposed embedded feedback control scheme
is discussed, and possible solutions for the realization of
the needed CRN-based amplification and subtraction blocks
are illustrated. Section IV presents an application example.
Finally, in Section V, some concluding remarks are given.

II. PRELIMINARIES ON CRNS

Any CRN, taken together with a specification of reaction
rate functions, gives rise to a system of ordinary differential
equations, usually nonlinear. The derivation of the dynamical
model of a CRN is based on the law of mass action [8],
that is, for an elementary reaction the rate of reaction is
proportional to the product of the concentrations of the
reactants.

A. Zero-Input CRNs

Consider, for example, a reactor containing three species,
denoted byA1, A2 and A3, and the following reaction
network

A1 +A2

κ1

−⇀↽−
κ2

2A3

κ3

−⇀↽−
κ4

A4 , (1)

whereκi, i = 1, . . . , 4, are the kinetic costants.

Denoting byxi the concentrations of the speciesAi, i =

1, . . . , 4, respectively, under the assumption of mass-action
kinetics, we have two elementary reversible reactions, which
occur at ratesvi, equal to

v1 = κ1x1x2 − κ2x
2

3 (2a)

v2 = κ3x
2

3
− κ4x4 . (2b)

The evolution over time of the species concentrations is
described by a system of ordinary differential equations,
which can be rewritten in compact form as

ẋ = Nv(x) , (3)
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wherex =
(

x1 x2 x3 x4

)T
is the species concentra-

tions vector,v =
(

v1 v2
)T

is the reaction rates vector and

N =









−1 0

−1 0

2 −2

0 1









is thestoichiometricmatrix.

In general, any CRN composed ofn species andr reac-
tions, following mass-action kinetics, can be written in the
form (3), wherex ∈ R

n, v ∈ R
r, and N ∈ R

n×r. For
example, referring to reaction (1),n = 4, r = 2 and
N ∈ R

4×2.

From a system theoretic viewpoint, system (3) is a zero-
input, nonlinear finite-dimensional system. Since the func-
tionsv(·), at the right-hand side of (3), are polynomials in the
variablesxi, system (3) is also called a nonlinearpolynomial
system.

B. Forced CRNs

Assume that the reaction network (1) is subject to an
affluent flux of species A1, say uA1

; according to [1], the
corresponding network diagram takes the form

A1 +A2

κ1

−⇀↽−
κ2

2A3

κ3

−⇀↽−
κ4

A4

∅
uA1

−−→ A1 ,

(4)

where∅
uA1

−−→ A1 is a fictitious reaction, which takes into
account the affluent input flux. The presence of the input flux
modifies the equation ofx1, which reads

ẋ1 = −κ1x1x2 + κ2x
2

3 + uA1
(5)

We can also define anoutput flux: assume that our goal is the
regulation of the flux of A3; therefore, lettingy3 := ẋ3, we
obtain a complete input-state-output description of network
(4).

In general, a network ofn species,m input fluxes andp
output fluxes, is described by a system of differential and
algebraic equations in the form

ẋ = Nv(x) + Fu =: f(x, u) (6a)

y =: g(x, u) , (6b)

where F ∈ R
n×m defines the contributions of the input

fluxesu ∈ R
m to the concentrations of the various species

and the output fluxes vectory ∈ R
p.

Fig. 1. Closed-loop output-feedback control scheme aroundan equilibrium
condition.

III. R EALIZATION OF AN OUTPUT FEEDBACK

CONTROLLER

In this section we shall illustrate an approach to the realiza-
tion of a proportional output feedback controller for a CRN,
exploiting an interconnection of CRN-based modules. For
the sake of simplicity we shall consider the case of a SISO
CRN, so that the controller requires only scalar amplification
and subtraction operations.

A. Output-feedback control around an isolated equilibrium
point

Let us refer to system (6), and assume thatx ∈ R
n is an

isolated equilibrium point corresponding to the constant input
u ∈ R

m; furthermore, lety denote the corresponding value
of the output, i.e.

0 = Nv(x) + F u =: f(x, u) (7a)

y = g(x, u) . (7b)

The study of the motion of system (6), subject tou, around
x can be reduced to the study of the motion around the
zero equilibrium of a suitable system. Indeed, the change of
variables

δx = x− x (8a)

δu = u− u (8b)

δy = y − y , (8c)

yields

δẋ = ẋ = f(δx+ x, δu+ u) = f̂(δx, δu) , (9)

which satisfiesf̂(0, 0) = 0. Also

δy = y − y = g(δx+ x, δu+ u)− y = ĝ(δx, δu) . (10)

Assume that a proportional output feedback control law in
the form

δu = K (δyr − δy) , (11)

is designed for system (9)-(10); we have

u = δu+ u = u+K (δyr − δy) . (12)
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Looking at the final control scheme, depicted in Figure 1,
it is seen that the controller implementation requires the
realization of the amplification blockK and the subtractor
block. A possible solution is proposed in the following
sections.

B. Realization of a CRN-based amplification block

A possible realization of the amplification block is yielded
by the following CRN

∅
uA
−−→ A

k1

−→ A+ C

B + C
k2

−→ B

C
k3

−→ ∅ .

(13)

It is worth remarking that the given reactions do not have
to be interpreted literally, but they can be a concise form
to describe a more complex, though equivalent, mechanism.
For instance, reactionA

k1

−→ A + C might equivalently be

replaced byA + Z
k′

1

−→ A + C with a constant source
of species Z. In this case, the speciesZ would not have
any influence on the other reactions; therefore, for the sake
of simplicity, we can write the reaction system in a more
compact form by omitting species Z. By applying the law of
mass action, we can readily calculate the model describing
the behaviour of CRN (13), which reads

ȧ = uA (14a)

ḃ = 0 (14b)

ċ = k1 a− k2 b c− k3 c (14c)

y = ċ , (14d)

where italic lowercase letters,a, b andc are used to denote
the concentration of speciesA, B andC, respectively, and
y denotes the output flux.

Note that the same amount of speciesB is produced and
consumed by the above reactions at any time, thus the
concentration keeps constant, that isb(t) = b(0) =: b̄.

The CRN (14) is a SISO linear system, whereuA and y

are the input and the output fluxes respectively; we can
easily analyze the input-output behaviour of such CRN by
exploiting the Laplace transform, which yields

a(s) =
1

s
uA(s) (15a)

s c(s) = k1 a(s)− k2 b̄ c(s)− k3 c(s) (15b)

y(s) = s c(s) . (15c)

By substituting (15a) into (15b) and the resulting equation
into (15c), we get the input-output transfer function of the

amplifier block

y(s)

ua(s)
=

k1
(

s+ k3 + k2b̄
) . (16)

Equation (16) is the transfer function of a system with
steady-state gain equal toK = k1/

(

k3 + k2b̄
)

. Note that, by
varying the initial concentration of species B, the proposed
amplifier scheme can be tuned to yield different amplification
values.

C. Realization of a subtraction block via CRN

To realize the subtraction operation between the fluxes of
two species, A and B, we propose to employ the following
CRN1

∅
uA
−−→ A

k1

−⇀↽−
k2

C

∅
uB
−−→ B

B + C
k3

−→ B∗ .

(17)

The dynamical system describing the behaviour of CRN (17)
is given by the two input-single output system

ȧ = k2 c− k1 a+ uA (18a)

ḃ = −k3 b c+ uB (18b)

ḃ∗ = k3 b c (18c)

ċ = k1 a− k2 c− k3 b c (18d)

y = ċ , (18e)

where italic lowercase letters,a, b, b∗ and c are used
to denote the concentration of species A, B, B∗ and C,
respectively.

In network (17), C is produced from A in a reversible
reaction, whose equilibrium depends on the ratiok1/k2.
Then, after binding B, C is degraded and the molecule B
undergoes a transformation (e.g. a phosphorylation), turning
into its inactive form B∗, which is no longer capable of
degrading C.
It is easy to show that, when the CRN is isolated, that is
uA = uB = 0, if reaction A

k1

−→ C is sufficiently fast, that is
k1 >> k2, the concentration of C will tend to a steady-state
value equal to the difference between the concentrations of
A and B (the proof will not be reported here due to space
limitations). Moreover, under the assumption that the rates
of variation of the affluent fluxesuA anduB are slow with
respect to the inner dynamics of CRN (17), the same property
holds also for the fluxuC, which converges to the difference
of the input fluxes.

1Here we use A, B and C to denote generic species, not the same ones
used in the realization of the CRN amplifier
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Fig. 2. Normalized error of the subtraction block: the figuresummarizes
the results obtained in 100 simulations using different random values for
the input fluxes and the kinetic parameters.

Numerical simulations, reported in Figure 2, confirm that
CRN (17) actually behaves as a subtraction module when
the kinetic constants satisfy the aforementioned conditions.

IV. CASE-STUDY: CONTROL OF AN ENZYMATIC

REACTION

This section illustrates the design and realization of a CRN-
based closed-loop output-feedback control system through
the interconnection of an embedded feedback controller
(assembled from the CRN modules discussed above) with
a CRN to be controlled.

A. Open–loop system

Let us consider a well-known CRN, namely the Michaelis-
Menten irreversible enzymatic reaction mechanism

S + E
kf
−⇀↽−
kr

E : S
kcat
−−→ P + E . (19a)

This CRN, which is a fundamental module of numerous
biochemical pathways, comprises a reversible reaction for
the formation of a enzyme-substrate complex E:S from the
free enzyme E and the substrate S; subsequently, the bound
substrate is transformed into product P and released through
an irreversible reaction along with the enzyme molecule,
which is then free to catalyze the transformation of other
substrate molecules.

Using the law of mass action, the plant dynamics can be
described through the nonlinear system

ẋ1 = kr x2 − kf x1 x3 + u (20a)

ẋ2 = −(kr + kcat)x2 + kf x1 x3 (20b)

ẋ3 = (kr + kcat)x2 − kf x1 x3 (20c)

ẋ4 = kcatx2 , (20d)

where x1, x2, x3, x4 denote the concentrations of sub-
strate, complex, enzyme, product, respectively. System (20)

is controlled through an input fluxu affecting the substrate
concentration. The objective of the control system is the
regulation of the flux of P to a desired set–pointyr; therefore,
the process output is chosen to bey = ẋ4.

If the system is forced with a constant input fluxū, the state
variablesx1, x2, x3 converge to the steady-state values

x̄1 =
(kr + kcat) ū

kf kcat x̄3

, x̄2 =
ū

kcat
, x̄3 = etot −

ū

kcat
, (21)

where etot = x2(t) + x3(t) is the total concentration of
enzyme (that is the free plus the bound form), which keeps
constant at any time, since the enzyme is neither consumed
nor produced in the enzymatic reaction. Note that equation
(20d) is decoupled by the rest of the model, since species P
does not influence the dynamics of the other species, whereas
the flux of P depends on the concentration of complex E:S.
Therefore, when fed with a constant flux of substrate,ū,
the system will eventually return a constant flux of product,
namelyȳ = ū.

For the considered CRN, the reaction rate constants are set
to kf = 15 (µM µs)−1, kr = 6µs−1, kcat = 0.6µs−1 and
we assumeetot = 0.5µM .

B. Controller design

The control goal is to regulate the response of the closed-loop
system to the set–pointyr = 0.2µM µs−1. Moreover, the
robustness of the control performance is an important issueto
be considered since the model parameters may be uncertain
and affected by unmeasurable perturbations. Therefore, we
will take into account both performance and robustness
requirements in the design of our control system. The design
will be conducted according to a classical loop-shaping
approach, based on the frequency response of the linearized
system. Note that, if we consider only the subsystem (20a)-
(20c), under a constant input̄u, such subsystem can be
linearized in the neighborhood of the steady-state condition
(21) and a nominal value of the output equal toȳ. The
following requirements on the closed-loop system are taken
into account for the controller design: i) settling time at 1%
of the final value of the step responseTs < 35µs; ii) Gain
Margin GM > 10 dB and Phase MarginPM > 120◦. The
desired outputy = 0.2µMs−1 can be achieved by injecting
into the CRN plant a feed–forward inputū = 0.2µM µs−1,
which yields the steady–state equilibrium values

x̄1 = 0.88 , x̄2 = 1/3 , x̄3 = 1/6 .

The controller gainK is tuned by analyzing the linear
response of the closed–loop system both in the frequency and
time domain. A settling timeTs = 32.2µs and robustness
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Fig. 3. System response to a step input:yr is initially set to the nominal
value 0.2µM/µs; at t = 70µs a step change is applied to setyr =

0.23µM/µs.

marginsGM = ∞ and PM = ∞ can be guaranteed for
K = 0.8.

A suitable amplifier module can be realized using the CRN
(13); the parameter values are set tok1 = 9µs−1, k2 =

2µM−1 µs−1, k3 = 3µs−1. The amplifier gain can be tuned
to the desired valueK = 0.8 by assigning to species B an
initial concentration̄b = 4.12µM .

Regarding the subtraction block, it has been realized using
the CRN (17). For this module, we chose the following
values of the kinetic constants:k1 = 300µs−1, k2 = 2µs−1,
k3 = 1µM−1 µs−1.

Finally, the interconnection of the three CRNs is implic-
itly realized by opportunely matching the input and output
species of the modules: the output species of the CRN
process, P, coincides with the second input species B in the
subtraction CRN; the fist input species A in the subtraction
CRN is used to specify the set-pointyr; the output species
C in the subtraction CRN coincides with the input species A
in the amplifier; the output species C in the amplifier CRN
coincides with the input species S of the CRN process.

As shown in Figures 3 and 4, the closed-loop nonlinear
control system, implemented through amplifiers and subtrac-
tion blocks, exhibits a satisfactory performance, also with
moderate control effort.

V. CONCLUSIONS

In the present paper we have presented a novel approach
to the problem of controlling the response of CRNs. A key
feature of the proposed method is the realization of the con-
trol scheme, which is based on the assembly of submodules
realized through CRNs, namely the amplification and the
subtraction blocks. The proposed CRN modules have been
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Fig. 4. Evolution of the species involved in the controlled CRN during
the experiment described in Figure 3.

first analyzed under isolated conditions and then assembled
to realize an output-feedback proportional controller, with
the aim of controlling the product flux of an enzymatic
reaction. Thein silico experiments have shown that the
proposed approach is suitable and yields promising results.
These results pave the way to a general theory for the design
of CRN controllers, which will be the subject of future work.
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