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Abstract—The present paper aims at the design, the 

development and the evaluation of a personalized glucose-

insulin metabolism model for patients with Type 1 Diabetes 

Mellitus (T1DM). The personalized model is based on the 

combined use of Compartmental Models (CMs) and a Self 

Organizing Map (SOM). The model receives information 

related to previous glucose levels, subcutaneous insulin infusion 

rates and the time and amount of carbohydrates ingested. 

Previous glucose measurements along with the outputs of the 

CMs which simulate the sc insulin kinetics and the glucose 

absorption from the gut into the blood, respectively, are fed 

into the SOM which simulates glucose kinetics in order for the 

latter to provide with future glucose profile. The personalized 

model is evaluated using data from the medical records of 12 

patients with T1DM for the time being on insulin pumps and 

CGMS. The obtained results demonstrate the ability of the 

proposed model to capture the metabolic behavior of a patient 

with T1DM and to handle intra- and inter-patient variability. 

I. INTRODUCTION 

YPE 1 Diabetes Mellitus (T1DM) is a chronic 

autoimmune disease characterized by deregulation of 

glucose metabolism. This metabolic disorder is caused by 

the autoimmune destruction of insulin-producing beta cells 

of the pancreas resulting in the absence of insulin secretion. 

The lack of insulin provokes elevated blood glucose levels 

(hyperglycemia) leading to spillage of glucose into urine. 

The excess glucose circulating through the body in the blood 

stream over time, leads to damage of blood vessels 

(angiopathy), resulting in serious long-term complications, 

such as kidney failure, blindness, amputations and heart 

problems. According to the diabetes control and 

complications trial [1], the aforementioned complications 

can be reduced by intensive glycemic control, which 

involves regular glucose measurements and exogenous 

insulin administration.  

Latest advances in technology have led to the 

development of continuous glucose monitors (CGMs) that 
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provide subcutaneous (sc) glucose measurements at a high 

frequency [2], and insulin pumps for continuous sc insulin 

infusion. However, glucose metabolism is strongly affected 

by several environmental factors such as nutrition, physical 

activity, patient’s psychological status and his overall 

lifestyle. Endogenous processes such as circadian rhythms 

are also involved in the regulation of glucose homeostasis. 

Moreover, taking into account intra- and inter- patient 

variability in response to therapy, tight glycemic control is 

difficult to be achieved. Regarding this, computational 

models able to produce accurate and reliable estimations of 

future glucose profile in response to various stimuli, are 

essential within the context of diabetes management. 

Several considerable efforts have been reported towards 

the development of computational models for the simulation 

of glucose to insulin metabolism. These can be physiological 

models representing fundamental glucoregulatory processes, 

which are derived by compartmentalizing the various 

physiological components involved in the human metabolic 

process [3], [4]. However, the fact that some of the 

endocrine processes affecting glucose metabolism are still 

not fully understood, these models take into account only a 

confined number of factors associated with glucose 

metabolism and they are not easily individualized to 

accurately simulate metabolic processes for a specific Type 

1 diabetes patient.  

In order to overcome the aforementioned difficulties, the 

use of data-driven modeling techniques has been proposed 

leading to the development of models which disregard the 

physiological insights but learn the insulin–glucose 

relationships using pattern recognition techniques. Within 

this context, several glucose prediction models have been 

developed based on Voltera series models, Time Series 

Analysis and Machine Learning Methods. In particular, 

nonlinear Volterra models of glucose to insulin dynamics 

have been shown to provide accurate predictions in the 

absence of noise [5]. A comparison between simulated 

compartmental and Volterra models of the dynamic effects 

of insulin on blood glucose concentration has been carried 

out [6]. Autoregressive exogenous input (ARX) and Box-

Jenkins (BJ) models with constant parameters and various 

model orders (high and low) have been applied to simulate 

glucose-insulin dynamics [7]. Several types of Artificial 

Neural Networks (ANN) such as multilayer perceptron 

(MLP) Neural Networks (NN) [8], Radial Basis Function 

(RBF) NN (RBF) [9], wavelet NN [10], and Recurrent 

Neural Networks (RNN) [11]-[13] have been used towards 

the simulation of glucose dynamics. Furthermore, glucose 
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prediction models based on Gaussian processes [14] and 

SVR [15] have been developed. Additionally, hybrid 

glucose-insulin metabolism models based on the combined 

use Compartmental Models and data-driven modeling 

techniques, such as RNN and SVR, have derived prominent 

results [11]-[13], [15].  

This paper presents the design, the development and the 

evaluation of a personalized hybrid glucose-insulin 

metabolism model. To address the intra- and inter- patient 

variability, the model incorporates a Self Organizing Map 

(SOM) able to capture the glucose metabolic behavior taking 

into account patient specific information. The personalized 

model was evaluated using data from the medical records of 

12 patients with T1DM. To the best of the authors’ 

knowledge this is the first work proposing a SOM towards 

the development of glucose prediction model. 

II. MATERIALS AND METHODS 

A. Dataset 

The personalized glucose-insulin metabolism model was 

developed and retrospectively evaluated using data from the 

medical records of 12 (7 male and 5 female) patients with 

T1DM for the time being on insulin pumps and CGMS, 

which were granted from the Diabetes Center, First 

Department of Pediatrics, P&A Kyriakou Children’s 

Hospital, Athens [12], [13]. Patients were monitored for a 

ten day period. For this period, all patients recorded 

information regarding the time and the amount of 

carbohydrates ingested and the insulin boluses administered 

for the meals or for correction purposes. The patients’ 

characteristics are shown in Table I.    

B. Methodology 

The proposed personalized glucose-insulin metabolism 

model is based on the combined use of a mathematical 

model (MM) module and NN module (Fig. 1). The MM 

module consists of two Compartmental Models (CMs), 

which simulate sc insulin kinetics and glucose absorption 

into the blood from the gut, respectively, while the NN 

module incorporates a SOM which models the patient’s 

glucose kinetics. Information regarding recent sc insulin 

infusion rate and meal intake are fed to the MM module. 

CMs’ outputs along with previous sc glucose measurements 

are applied to the SOM that provides glucose predictions. 

Each of the modules are described in the following.  

1) CM for Sc Insulin Kinetics: Following a sc insulin 

injection, the rate of appearance of insulin in plasma is 

described by a linear CM [16], [11].    

2) CM for Glucose Absorption from the Gut: The 

physiological model of glucose intestinal absorption is a 

three-compartment nonlinear model with two compartments 

representing the stomach (solid and liquid phases) and the 

third compartment representing the intestine [11], [16], [17]. 

The model assumes a constant rate of the intestinal 

absorption but describes gastric emptying rate to be 

dependent on the total amount of nutrient in the stomach.   

3) SOM: In general, SOMs are mainly used for data 

clustering and visualization of high dimensional data. 

However, SOMs can also be trained to learn input-output 

mappings and used for function approximation. The SOM 

usually, consists of a two dimensional grid of neurons. Every 

input vector is associated with a neuron in the grid which is 

called the winner neuron. Every neuron is associated with a 

weight vector which has the same dimensions as the input 

vector. During the training stage the weights of the neurons 

in the neighbor of the winner neuron are updated. The 

learning rate as well as the scope of the neighbor are 

decreased as the epochs go by. After the training stage, areas 

with similar input vectors are created and these vectors are 

represented by a neuron. In this sense, this method of 

training could be regarded as a Vector Quantization Method 

[18].   

This technique is implemented in order to produce 

estimations for future glucose levels. Particularly, a two 

dimensional grid of N neurons is created and every neuron i 

is associated with a weight vector inw  and a weight value 

outw . The input vector (
inx ) has the form:  

)]1(),1(),(),...1([)(  tRatItGntGtx y

in  (1) 

where G  represents the glucose, I  is the rate of appearance 

of insulin in plasma, Ra is the appearance rate of glucose in 

plasma, and yn  is the number of steps that determine the 

time window to be considered for the past glucose 

measurements. A value )(txout  corresponds to each input 

vector, which is the next glucose value: 

)1()(  tGtxout   (2) 

The vector inw  has the same dimensions as the input 

vector. During training, the winning neuron is determined by 

calculating the euclidean distance between the input vector 

and the weight vectors ( inw ) of every neuron. The neuron 

with the lowest euclidean distance is the winner ( )(* ti ): 

 
Fig. 1. Outline of the Personalized Glucose-Insulin Metabolism 

Model 

 

TABLE I 

T1DM PATIENTS’ CHARACTERISTICS 

 Mean ± Standard Deviation 

Age 19.83 ± 12.28 

Diabetes Duration 12.67 ± 7.74 

BMI 22.00 ± 4.88 

HbA1c 6.78 ± 0.94 
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At every iteration the weights inw  and outw are changed 

according to the rule: 

)]()([),,()()( * twtxtiihtatw ininin   (4)  

)]()([),,()()( * twtxtiihtatw outoutout   (5) 

where )(ta
 

is the learning rate which decreases 

exponentially with time starting from value oa  until Ta  : 
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where  is the number of total epochs. Moreover, ),,( * tiih  

is the neighborhood function with a Gaussian form: 
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where )(tri  and )(* tr
i

 are the locations of neurons i and i* 

respectively. Parameter )(t  also decreases exponentially 

with time starting from value 0  until   : 
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In this way, at the beginning of the training procedure, a 

wide area of neurons is affected and as the procedure goes 

by, a smaller area around the winner neuron is affected until 

only the winner neuron changes its weights.   

After the training stage SOM can be used to obtain 

estimates of future glucose values. For every new input 

vector the winner neuron ( *i ) is found and the 

corresponding  outw value is the glucose prediction )1( tG . 

However, this technique requires a great number of neurons 

in order to have a small prediction error [18]. To overcome 

this problem, a technique towards the creation of multiple 

local linear models is applied [19]. Particularly, the 

estimated glucose levels are produced from a linear 

Autoregressive Model with Exogenous Inputs (9).  
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where coefficients ac , b , and c  are calculated during 

training [20], [21] starting from zero values. In every neuron 

corresponds a vector of these coefficients ( )(tvi ) which is 

updated according to the following equation: 
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This way the neighborhood around every neuron forms a 

local linear model. After the training stage, when a new 

input vector arises the winner neuron is computed and the 

corresponding coefficients are used to produce the future 

glucose value from (9).  

4) SOM’s Tuning: The number of past glucose 

measurements ( yn ) was set to 5, which corresponded to a 25 

min time interval. Parameter N and number of epochs were 

determined through trial and error. A grid of 3×3 (N=9 

neurons) was found to be sufficient to capture the dynamic 

of the system. Moreover, 200 epochs was large enough in 

order for the coefficients to be stabilized. Regarding the 

parameters associated with the learning rate, 0a  and Ta were 

set equal to 0.9 and 0.01, respectively.
 0  was set to 2 

which corresponded to the maximum distance between all 

neurons while T  was set equal to 1. The initial values of 

the weights were randomly selected within the range [0 1].    

III. RESULTS AND DISCUSSION 

For each patient, data corresponding to the 60% of the 

monitored days were used for training purposes (model 

development), while the remaining 40% for testing (model 

evaluation). The predictive performance of the proposed 

model was evaluated considering a prediction horizon (PH) 

equal to 30 min and 60 min with a 5-min resolution. In order 

to provide with a reliable evaluation, 30 min and 60 min time 

intervals, where at least one event (i.e carbohydrates 

TABLE II 

CONTINUOUS GLUCOSE ERROR GRID ANALYSIS 

 Hypoglycemia 

(%) 

Normal 

Glycemia (%) 

Hyperglycemia 

(%) 

 30 min 60 min 30 min 60 min 30 min 60 min 

Accurate 

readings 
81.06 63.22 92.18 91.71 88.27 87.19 

Benign 

Errors 
3.48 2.83 7.59 7.97 2.96 3.45 

Erroneous 

Readings 
15.46 33.95 0.23 0.32 8.77 9.36 

 

 

 

 
Fig. 2.  Representative example of glucose predictions (dashed line) 

and glucose measurements (solid line). Upper panel: 30 min, Lower 

panel: 60 min PH   

 



  

ingested, change in basal insulin infusion rate, insulin bolus 

ingested) occurred, were excluded from the original testing 

data.      

Root-mean-squared error (RMSE) and correlation 

coefficient (CC) corresponding to the testing dataset were 

calculated to evaluate the performance of the model in terms 

of matching the predicted glucose with the original ones. 

Furthermore, in order to evaluate the clinical accuracy of the 

glucose predictions and their effects on decisions to avoid 

hypo- and hyperglycemic events, the Continuous Glucose 

Error Grid Analysis (CG-EGA) [33] were used.   

From both the RMSE (mean ± standard deviation (SD): 

14.10 ± 4.57) and CC (mean ± SD: 0.94 ± 0.02), it is 

obvious that the predicted glucose profile follows the 

original one for 30 min PH. Even for the case of 60 min PH, 

the RMSE (mean ± SD: 23.19 ± 6.40) and the CC (mean  ± 

SD: 0.84 ± 0.05) indicate that the glucose predictions are 

close to the original ones. This is also obvious in Fig. 2, 

which shows a representative example of the glucose 

predictions along with the glucose measurements as resulted 

when the model provides predictions every 30 min (upper 

panel) and 60 min (lower panel), respectively. Moreover, 

from the CG-EGA presented in Table II, it is observed that 

for 30 min PH, high percentage of glucose predictions are 

accurate readings. Regarding the 60 min PH, most of the 

glucose predictions are accurate readings in the ranges of 

normal glycemia and hyperglycemia while most erroneous 

errors are observed in the range of hypoglycemia.  

Future work concerns the enhancement and extension of 

the model by introducing more inputs related to physical 

activity. Furthermore, the model will be integrated into a 

closed-loop glucose controller in order to provide with 

future glucose profile to be used by the controller towards 

the estimation of insulin infusion rates.     

IV. CONCLUSSIONS 

A personalized hybrid glucose-insulin metabolism model 

is presented. The model is based on the combined use of 

CMs and a SOM. The predictive performance of the model 

is tested using data from the medical records of 12 patients 

with T1DM. The algorithm described above is simple and 

the computation time is low since only a small number of 

neurons is required. The obtained results demonstrate the 

model’s ability to capture the metabolic behavior of a patient 

with T1DM and to handle inter- and intra- patient variability 
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