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Abstract— Moleculo DNA sequencing technology provides
extremely accurate, phased, reads having an average length
of over 4,000 bp. Very little is yet known about the precise
characteristics of these reads. We estimate a lower bound for
the single nucleotide substitution error rate of these reads,
and provide probabilities for each type of substitution. We
also present preliminary work on the development of an error
correction algorithm for these reads which in its current
implementation corrects 74,030 single nucleotide errors in a
Moleculo data set obtained from Rubus idaeus ‘Heritage’. We
also demonstrate that the pattern of substitution errors shows
no significant bias with respect to the position of an error along
the body of a read.

I. INTRODUCTION

Approximately 7 years ago the field of DNA sequencing
began a major revolution in which Sanger sequencing be-
came largely displaced by next-generation sequencing tech-
nologies capable of rapidly producing orders of magnitude
more sequencing reads at dramatically reduced cost. This
increase in throughput, however, was accompanied by a
significant reduction in individual read length, thus greatly
complicating analyses such as de novo assembly and haplo-
type phasing.

Today, the field is in the throes of another major revolution
in which reads several times longer than traditional Sanger
reads are becoming commonplace. As of June 2013, the
PacBio RS II sequencing system produces reads with an
average length of over 4,000 bp and a maximum length of
over 20,000 bp [5]. This technology can exhibit error rates
higher than 12% [4] but has been shown to be useful for
de novo assembly when coupled with a disciplined error
correction protocol [4].

Another technology exhibiting similar length characteris-
tics but markedly different error characteristics has been de-
veloped by Moleculo [8] and recently acquired by Illumina.
This technology works by first breaking the target DNA into
large fragments of approximately 10,000 bp. Each of these
large fragments is then used to produce a barcoded short-read
Illumina library and the resulting reads sharing a particular
barcode are assembled together to produce virtual long reads.

The characteristics of the reads produced by this technol-
ogy are not yet well understood and no error correction al-
gorithm has yet been designed specifically for the properties
of these reads. This paper presents an initial exploration into
these issues. It provides a reference-free assessment of the
rate and types of substitution errors in Moleculo reads and

describes the initial stages of the development of a k-mer
based algorithm for their correction.

II. RELATED WORK

A number of important k-mer based error correction algo-
rithms currently exist for short-read high-coverage data such
as that produced by the Illumina HiSeq. To our knowledge,
the first description of a k-mer based error correction algo-
rithm was given in Pevzner’s landmark paper introducing the
Eulerian path approach to fragment assembly [6]. This work
has been built upon by a number of important algorithms
including the error correction module of ALLPATHS-LG [2]
and the Quake algorithm [3] which uses maximum likelihood
in a framework that explicitly incorporates base qualities.

All of these methods rely on high coverage in order to
make inference on which k-mers are likely to be in the target
genome (trusted k-mers) and those which are likely to have
errors. Although Moleculo long reads are built from barcoded
HiSeq reads, the underlying HiSeq reads are not provided
to the client. For this reason, error correction algorithms
which rely on high coverage are not directly applicable to
Moleculo reads. Instead, any k-mer based approach must use
a separate, high-coverage, data set to build a model of trusted
and untrusted k-mers. The k-mer model built from the high-
coverage data set is then mapped onto the Moleculo reads
in order to correct them. The practice of using high-quality
short reads to error correct long reads is quickly becoming
standard practice in the case of PacBio reads [1], [4].

Because the Moleculo technology is so new there is
no body of research applying any of the standard error
correction algorithms to Moleculo reads in the 2-data-set
manner just described. The Quake algorithm separates its
k-mer counting step from its read correction step. This may
enable direct correction of Moleculo reads with the Quake
algorithm by using a high-coverage data set in the k-mer
counting step and the Moleculo data set in the correction
step. Of course, this is an atypical usage of the algorithm
and the performance of the algorithm under these conditions
has yet to be tested.

III. MATERIALS AND METHODS

A. Moleculo data set
The Moleculo reads used in this study come from a de

novo whole genome project targeting the highly heterozy-
gous raspberry cultivar Rubus idaeus ‘Heritage’. We obtained
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Fig. 1: Histogram of Moleculo read lengths (min = 1,500 bp;
max = 23,760 bp; mean = 4,252 bp; median = 3,193 bp)

285,801 long Moleculo reads, comprising 1,215,243,110
bases. The read length distribution of these reads is sum-
marized in Figure 1.

B. Definitions

Let R denote an arbitrary Moleculo read. For a read having
length L, an individual nucleotide can be referred to using
the symbol Ri where i 2 {0, 1, 2, . . . , L � 1}. R0 refers to
the 50 terminus and RL�1 refers to the 30 terminus of the
sequence.

In general usage, the term k-mer refers to a sequence of
nucleotides, having length k, irrespective of the particular
location at which the k-mer is found. For example, one
might say that the 13-mer ACTGACTGATGCA is found
1000 times in a set of sequencing reads. We distinguish this
usage of k-mer from the term localized k-mer. A localized k-
mer is a sequence of nucleotides having length k that is also
associated with a particular position in a sequencing read or
genome. In this usage the localized 13-mer ACTGACTGAT-
GCA beginning at a particular location is distinct from all
other localized k-mers, including those that share the same
sequence. When there can be no confusion a localized k-mer
will sometimes be referred to simply as a k-mer.

Every position Ri has an associated localized k-mer
spectrum which is the set of all localized k-mers which
contain Ri as a base. The position Ri of such a spectrum is
sometimes referred to as the anchor of the spectrum. When
there can be no confusion a localized k-mer spectrum will
be referred to simply as a k-mer spectrum. The maximum
cardinality of any localized k-mer spectrum is equal to k.
Spectra having cardinality k are referred to as unconstrained
while spectra having cardinality less than k are said to be
constrained (see Figure 2). When a localized k-mer spectrum

Fig. 2: The 3-mer spectrum at R3 is unconstrained because it
contains 3 3-mers. The 3-mer spectrum at R0 is constrained
because it only contains a single 3-mer.

is anchored on a single nucleotide substitution error, the
spectrum is referred to as a substitution spectrum.

For a particular set of trusted k-mers S, there is an
associated relapse rate r. The relapse rate is the probability
(weighted by k-mer count) that a single-nucleotide substitu-
tion in a set of trusted k-mers will produce another k-mer
in the set. The procedure for calculating this probability has
been incorporated into the Bioluminescence software suite
[7]. The algorithm consists of a user-defined number of
Bernoulli trials. Each Bernoulli trial consists of making a
single nucleotide substitution in a particular trusted k-mer
(each substitution is guaranteed to introduce a new base,
in other words the algorithm never substitutes a nucleotide
with itself). A trial is successful when the newly created
nucleotide sequence is also in the trusted k-mer set.

The trials are performed in trial sets. A trial set is per-
formed by first selecting a random k-mer from the trusted set
and performing n Bernoulli trials using that sequence where
n denotes the k-mer count. The use of trial sets ensures that
a k-mer found at count 1000 carries twice as much weight as
one found at count 500 and so on, however, this procedure
can bias the results when the number of Bernoulli trials is
small. The results reported in this paper perform 2,000,000
Bernoulli trials. All random operations are performed using
cryptographically strong random number generators.

C. Estimating a lower bound on the error rate
In addition to the Moleculo sequence data, a set of

Illumina short reads comprising approximately 45x coverage
of the Rubus idaeus genome was generated. This data set
was subjected to k-mer counting for k=31. K-mers observed
at frequency 2 or greater are considered trusted while all
other k-mers are considered untrusted. Each Moleculo read
was examined to determine the number of its localized 31-
mers that are trusted. Of the 285,801 Moleculo reads tested,
1,422 had 1,000 or more untrusted k-mers. These reads were
excluded from the error rate analysis because they are likely
contaminants.

A lower bound on the probability that a Moleculo base is
an error was approximated using:

U/(31 ⇤ (1� r))

N
(1)



where U is the total number of observed untrusted 31-mers,
r is the relapse rate, and N is the total number of bases in
the Moleculo reads.

This equation would yield a direct estimate of the error rate
if no substitution spectra overlapped. Because of overlapping
substitution spectra this number provides only a lower bound
on the error rate, that is to say, the error rate must be
somewhat worse than this number.

D. Error correction
Our development of an error correction algorithm specif-

ically designed to correct long Moleculo reads using a k-
mer model built from a separate high-coverage data set is
in development. The completed implementation reported in
this work is used to make inference about the properties
of Moleculo reads. This implementation finds and reports
single-nucleotide substitution errors which cause uncon-
strained non-relapsing substitution spectra. A substitution er-
ror causes a non-relapsing substitution spectrum when none
of the k-mers in that position’s localized k-mer spectrum
are trusted. When such a spectrum is surrounded on each
side by a trusted k-mer the position of the single nucleotide
error is known. The current implementation corrects such
positions when there is exactly one trusted k-mer which can
be produced by mutating the erroneous base.

This implementation is too restrictive to be used as a
general-purpose error correction utility but is useful for
examining the types of substitution errors that are present
in Moleculo reads, and this is the purpose for which it is
used in this work. The algorithm is available as part of the
Bioluminescence software package [7].

IV. RESULTS

A. A lower bound on the error rate
The relapse rate for 31-mers in the Rubus idaeus data

set was calculated using the method described in III-C to
be 26.79%. Most readers will likely be surprised how high
this number actually is. To understand why the rate is so
high it is important to keep in mind that the relapse rate is
calculated using weighted k-mer counts. A repetitive k-mer
occurring in the set 3,000 times will have 100 times more
effect on the rate than a k-mer occurring only 30 times.
Furthermore, because we set the trusted threshold low (a
count of 2 or greater) erroneous variants of true k-mers may
be creeping into the trusted set causing the relapse rate to
be higher. Finally, the unusually high heterozygosity of the
target organism likely inflates this value above what would
be seen in less heterozygous organisms.

A lower bound on the probability that a particular base
is an error in a Moleculo read was estimated using the
protocol described in Section III-C. To conceptualize why
this number only provides a lower bound consider two
single nucleotide errors which occur directly next to each
other. Each one produces a substitution spectrum having 31
potentially untrusted k-mers. If the spectra did not overlap
the 2 errors would introduce 62 potentially untrusted k-
mers. Because they overlap, however, only 32 potentially

Fig. 3: Base A (pointed to with the solid arrow) and base G
(pointed to with the dashed arrow) are single nucleotide sub-
stitution errors. Each produces a substitution 3-mer spectrum
containing 3 potentially untrusted 3-mers (shown in solid and
dashed lines respectively). If the errors had been far apart the
spectra would not overlap and 6 potentially untrusted 3-mers
would be found. When directly next to each other (as shown
in the image) they only produce 4 potentially untrusted 3-
mers.

untrusted k-mers are produced by the 2 errors (see Figure
3). Adjusting for overlapping substitution spectra can only
cause the estimate of the error rate to increase so the number
calculated using the technique described in Section III-C
provides a lower bound.

The calculated lower bound on the probability that a
Moleculo base is an error is 0.00014 (1.4 errors per 10,000
bases). This suggests that although the Moleculo reads are
likely to be extremely high quality the Phred scores reported
with the reads should be understood in relative, rather than
absolute, terms. The average Phred score reported in our
Moleculo data set was 49.935. This translates to an error rate
of 1.015 errors per 100,000 bases. Our analysis suggests that
the actual error rate is at least an order of magnitude higher.

With that said, even if the correction for overlapping
spectra caused a full order of magnitude increase in the
error rate (extremely unlikely) the estimated error rate would
be 1.4 errors in 1,000 bases making this technology the
most accurate sequencing technology available. Our analysis
suggests that the accuracy of Moleculo reads is similar to
that of high-quality consensus sequence.

B. Error identification and correction
A run of the restrictive error correction algorithm de-

scribed in Section III-D found and corrected 74,030 single
nucleotide errors in the Rubus idaeus data set. The relative
frequency at which each possible type of correction occurred
was also recorded. These results demonstrate that nearly 70
% of all the miscalls in the Rubus idaeus data set consist
of incorrectly calling a C when T was the correct base, or
incorrectly calling a G when A was the correct base. The
complete results for the relative frequency at which each
type of correction was made is given in Figure 4.

Standard Illumina reads have a well known error-profile
bias in which nucleotides near the 50 end of the read are much
more likely to be correct than nucleotides near the 30 end of
the read. Because of the way in which Moleculo reads are
produced we expect that the position of errors along the body
of a read should be much more randomly distributed. To test



Correction Count Percentage
A ! C 2150 2.9 %
A ! G 6046 8.2 %
A ! T 1269 1.7 %
C ! A 1411 1.9 %
C ! G 659 0.9 %
C ! T 25609 34.6 %
G ! A 25368 34.3 %
G ! C 692 0.9 %
G ! T 1431 1.9 %
T ! A 1327 1.8 %
T ! C 5913 8.0 %
T ! G 2155 2.9 %

Fig. 4: Table showing the relative frequency of various types
of substitution error corrections (original base ! corrected
base; Count = the number of occurrences of the specified
correction; Percentage = the percentage of all corrections
accounted for by the specified correction)

this hypothesis each position at which a single nucleotide
error correction occurred was translated to a scaled position
ranging from 0 at the 50 terminus to 1 at the 30 terminus.

Let y be the random variable whose values are the scaled
positions at which single nucleotide errors were corrected.
The probability density function for this random variable is
reported in Figure 5 and shows no significant position bias.
The randomness of the error distribution makes a number of
downstream analyses easier.

V. DISCUSSION

This study provides confirming evidence that the new
Moleculo technology provides long reads at exceptionally
high accuracy. These reads exhibit error rates much more
similar to high-quality consensus sequence than to the
raw reads of any widely-available technology. Of course,
Moleculo reads are produced through a consensus process so
this is not an unexpected result. However, to our knowledge,
no independent analysis had yet confirmed the high accuracy
of these reads.

The combination of long read length and consensus-
quality accuracy will likely lead to the adoption of the
Moleculo technology as the dominant sequencing technology
for a number of challenging applications such as de novo
assembly and haplotype phasing.

In particular, these reads promise to revolutionize the study
of polymorphic genomes. Careful separation of haplotypes is
among the most challenging of bioinformatics tasks. Often
just a few bases in a thousand separate one haplotype from
the other. The haplotypes can be kept separate across long
distances only when the reads are highly likely to cover more
than one polymorphic position and each polymorphic posi-
tion can be reliably distinguished from any error. Moleculo
reads are the first reads we are aware of that have the
correct combination of length and accuracy to allow for de
novo construction of long haplotypes across a wide array of
organisms with varying levels of heterozygosity.

Fig. 5: The probability density function for the random
variable y where each value of y is the scaled position of a
corrected base (0 = 50 terminus; 1 = 30 terminus)
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