
  

  

 
Abstract—Secondary structure prediction is an important 

step in understanding gene function.  Several algorithms have 
been proposed for applying machine learning techniques to this 
problem.  This research examines these algorithms and 
constructs a framework that is effective in providing accurate 
predictions. 

I. INTRODUCTION 
The most effective modern algorithms for secondary-

structure prediction almost universally use information from 
multiple-sequence alignments of homologous proteins with 
known structures. This is undoubtedly a sound approach for 
predicting structures of sequences that have many known 
homologues; good accuracy could probably be achieved by 
simply predicting that the test sequence’s structural label at 
any given position in the sequence matches the most 
consensus label at the corresponding position in the 
multiple-sequence alignment. However, for proteins with no 
known homologues, it would be prudent to use a different 
approach—one that still leverages domain-specific 
knowledge in the context of a machine-learning model.  

Ideally, predicting the secondary structure of a protein at a 
given position would be as simple as identifying unique, 
short subsequences whose central amino acids always have 
one specific label. This approach’s effectiveness is limited, 
though, for two reasons: first, the number of possible 
permutations of 22 possible amino acids (with replacement) 
for a subsequence is exponentially large. There would, for 
example, be 2213 possible amino-acid subsequences of 
length 13aa. Even with all the data in the RCSB protein data 
bank, the number of subsequences of length 13aa with 
known labels is a very small fraction of the number of 
subsequences that are possible. More important, though, is 
the fact that the RCSB data demonstrates that many identical 
subsequences of length 13aa have different labels when they 
appear in different proteins or in different contexts. Thus, 
even if the search space of every possible subsequence were 
tractable, some subsequences could only be assigned 
tentative majority labels; this would limit the maximum 
theoretical accuracy of the model. 

In order for a machine-learning model to generalize well 
to test instances that have little sequence identity with 
training instances, it must use some intelligent metric that 
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can tell when dissimilar subsequences have amino acids with 
similar properties at identical positions. It must also be able 
to identify similar periodic patterns in those properties so 
that instances that are nearly identical, but whose attribute 
values are all shifted by a single position (like two 
successive sliding windows) can still be recognized as 
similar to one another.  

This research identifies intelligent metrics that can 
recognize similarities between individual amino acids and 
patterns found in sequences of amino acids that are 
meaningful in the context of secondary-structure prediction. 
It also tests machine-learning algorithms that can suitably 
harness the information from those metrics to create a model 
that can accurately the predict secondary structure of a test 
sequence that has a low degree of sequence identity with the 
model’s training sequence.   

The next section discusses previous research and related 
work in secondary-structure prediction. The methods section 
discusses the metrics and models that were used and the 
rationale behind why they were chosen. This is followed by 
an experimental results section and a conclusion section that 
discusses what was learned from the research. 

II. RELATED WORK 
Researchers have attempted to predict protein secondary 

structure using sequence data for at least five decades. In 
1964, Straub published a thorough article describing the 
“widely accepted hypothesis” that that secondary and 
tertiary structure could be determined entirely based on 
primary structure [1]. The theory seemed attractive enough, 
especially given that some previous and subsequent studies 
demonstrated that many unfolded proteins can refold into 
their original conformations when placed in the proper 
environments [2, 3]. However, Straub wisely noted some 
observations that were “not in harmony with the theory of 
absolute determinism,” thereby showing awareness of the 
problem’s greater complexity [1]. By 1969, some had 
theorized that a protein would simply fold into the 
conformation corresponding to its globally lowest free 
energy; Cyrus Levinthal, however, presented the now-
famous “Levinthal’s paradox” in which he argued that a 
protein could not be randomly moving through all of the 
exponentially large number of its possible conformations 
quickly enough to find its global minimum in time to explain 
the experimental refolding speeds of some proteins [4]. 
Several years later, Afinsen presented a postulate that is now 
known as “Afinsen’s Dogma”: given a specific set of 
environmental conditions, a small globular protein’s native 
conformation will be a unique, stable, and kinetically 
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accessible structure (though it may only represent a local 
minimum relative to free energy) [5]. Simon also published 
useful research detailing some structural features that 
contribute to refolding ability [3].Though it is now known 
that there are exceptions to Afinsen’s dogma, such as 
intrinsically disordered proteins [6], the principles it 
embodies are still useful in guiding research.  

With the explosion of publicly available biological-
molecular data in the past two decades, researchers have 
continued to incrementally discover new knowledge that is 
pertinent to the structure-prediction problem. Berezovsky 
and Trifonov, for example, presented evidence that that 
proteins fold into subunits of 25-30 amino acids in a local 
way [7]. Rost and Sander used evolutionary information 
from a multiple-sequence alignment to improve a neural 
network’s ability to predict secondary structure [8]. Many 
other researchers also demonstrated the power of using 
multiple-sequence alignment information and position-
specific scoring matrices to improve machine-learning 
models’ prediction accuracy [9]. Some machine learning 
models that have been used to predict secondary structure 
have included feed-forward neural networks, support-vector 
machines [10], and recurrent neural networks [11]. 

While the efforts of many capable researchers continue to 
yield improving prediction accuracy, the holy grail of 
prediction based on primary sequence alone remains an 
elusive goal. The structure of a newly sequenced protein that 
lacks known homologues, for example, would likely be 
more difficult to predict because the multiple-sequence 
alignment approach would provide less information. 
Nevertheless, there are some key amino acid properties that 
have been shown to aid in secondary-structure prediction in 
in the absence of information from homologous proteins. 
Moments of hydrophobicity and residue conformational 
propensities are among those important properties [12].  

III. METHODS 
When aiming to identify the secondary structure of any 

single amino acid in a sequence, it is important to remember 
that there is a high degree of dependence between its label 
and the labels of the amino acids immediately next to it. An 
amino acid that is part of an alpha helix, for example, is 
always next to at least one other amino acid that also has the 
same label because at least four consecutive amino acids are 
needed to form an alpha helix structure [13]. This principle 
applies to all secondary structures, since they are all formed 
as a result of bonding between the backbones of at least two 
amino acids. The data found in SS.txt, a file containing the 
known secondary structure labels for all RCSB Protein Data 
Bank files is consistent with principle. As an example, the 
distribution of lengths of all contiguous alpha helix 
structures found in ss.txt is shown in Figure 1.   

Given this high degree of dependence between the labels 
of successive amino acids, the best machine-learning models 
for secondary structure prediction should some means of 
capturing the dependence information that is found in a 

given training set. Complex dependencies that could not be 
captured by simply looking back one step clearly existed in 
this project’s data set; four amino acids with structure labels 
NHHH must be followed by an amino acid with label H, for 
example, but one amino acid with label H may or may not be 
followed by an amino acid with label H. Hidden Markov 
models and Elman nets can look back one step, but recurrent 
neural networks can look back an arbitrary number of steps 
and can therefore capture more complex dependencies 
between successive instances. As a result, a recurrent neural 
network was chosen as the principal model to be used for 
this research. 

Measuring how similar two amino acids are to one 
another is deceptively difficult because there are at least 237 
known properties [14] that can be compared; some may be 
similar to each other with regard to one property, but 
dissimilar with regard to one another. While it is likely that 
many of these properties would not yield useful information 
for secondary structure prediction, it is difficult to define 
each property’s relevance a priori. Fortunately, 
Venkatarajan used multidimensional scaling to condense the 
information from these 237 properties into five quantitative 
descriptors [14]. It seemed prudent to use these descriptors, 
since they contain a great deal of information that should 
help a machine-learning model quantify amino-acid 
similarity. It also seemed self-evident that helical propensity 
is a property that should be included [15].  

It is generally known that the interaction of amino-acid 
residues with water strongly influences the native structure 
of proteins [12]. Amphiphilic helices are often situated in 
proteins such that one side of the helix interacts with the 
hydrophobic interior of the protein and the other side 
interacts with the hydrophilic surrounding solution. As a 
result, hydrophobic and hydrophilic residues are generally 
distributed in a non-random pattern that isolates them on 
opposite sides of the helix. The angle at which one residue is 
radially pointed outward from the center of an alpha helix is 
approximately 100 degrees greater than the angle of the 
previous residue in the helix. This principle is best illustrated 

Figure 1: Distribution of Lengths of All Coniguous Alpha-Helix 
Sequences Found in the NCBI Protein Database. 



  

with a Wenxiang diagram [12], a “conical projection of an 
α-helix onto a plane perpendicular to its axis” as shown in 
Figure 2 [17]. 

 
 
Some researchers have quantified this property by using 

the hydrophobic moment [12]. To calculate the hydrophobic 
moment, a descriptive vector is created for each amino acid. 
The direction of the vector points outward from the center of 
the helical axis toward the residue, while the magnitude of 
the vector equals the hydrophobic magnitude of the residue 
(which is, of course, negative for hydrophilic residues). The 
hydrophobic moment is calculated by adding the all the 
individual residue vectors. It has shown to be a helpful 
metric for secondary structure prediction [16]. 

In order to glean more information from the 
hydrophobicity patterns, though, a slightly modified 
approach was used. The cumulative moments of the 
hydrophilic and hydrophobic residues were calculated 
separately and the angle between them was determined. The 
inter-moment angle is a metric that the author invented 
independently and has not seen used in any of the literature, 
but it looked promising after data gleaned from ss.txt 
demonstrated that the distributions of inter-moment angles 
for alpha-helical regions and unstructured regions appear to 
be very distinguishable; that data is shown in the histograms 
found in Figures 3 and 4.  

Given the promising results shown by the inter-moment 
angle metric, it was included along with the magnitudes of 
both the hydrophobic and hydrophilic moments as an 
attribute for each training instance.   

Since the many specialized metrics described above 
expand the attribute space considerably, it seemed prudent to 
seek out a method to reduce the size of the feature space 
without losing most of the pertinent data contained therein. 
While many options exist, a stacked auto-encoder seemed 
like an ideal approach because it condenses information 
from all attributes into a new set of smaller set of 
dynamically defined attributes; other approaches that simply 
discard attributes that are only weakly to the label might lose 
the benefit (albeit small) of that discarded information.     

First, the pdb file for ferritin from the pseudo-nitzschia 
series was chosen as the data set because ferritin is a large 
protein with intricate secondary-structure patterns. It was 
converted to an arff file using a Perl script; the resulting data 
set had thirteen attribute columns and one classification 
column. For every given instance, each of the attribute 

columns could have any single-letter value found in the set  
{A,R,D,N,C,E,O,G,H,I,L,K,M,F,P,Q,S,T,W,Y,V,X}, where 
each letter represented its corresponding amino acid (or, in 
the case of X, an unknown amino acid; X values are 
occasionally found in PDB files). The classification column 
of each instance could have any single-letter value found in 
the set {H,B,E,G,I,T,S,N}, where H = helix, B = residue in 
isolated beta bridge, E = extended beta strand, G = 310 helix, 
I = pi helix, T = hydrogen-bonded turn, S = bend, and N = 
nothing. The classification column represented the 
secondary-structure classification of the middle amino acid 
(i.e., the seventh) in the instance. The instances represented 
all successive subsequences of length 13aa (i.e., a sliding 
window of size 13 was used). This arff file was meant to 
serve as a control, since it used none of the specialized 
metrics described in the preceding sections. 

 
Next, the first arff file was converted to a new arff file that 

replaced the original 13 attributes with an expanded set of 85 
attributes. For each instance, this was done by exchanging 
each amino-acid letter for its five Venkatarajan quantifiers 
and its helical propensity (delimited by commas 
appropriately). The three hydrophobicity attributes were then 
added, followed by the output classes of the previous four 
instances in order to achieve the recurrent neural network 

Figure 3: Diagrams of a true alpha helix (left) and a region without 
secondary structure mapped as though it was an alpha helix (right). 
Hydrophobic residues are colored red. Figure 2: Distribution of Hydrophobic Inter-Moment Angles 

Found in Alpha-Helices of length 13 amino acids in NCBI 
Protein Database 

Figure 4: Distribution of Hydrophobic Inter-Moment Angles Found 
in Non-Structured Sequences of Length 13aa in NCBI Protein. 
Database 

 



  

structure. This was also done with a Perl Script. 
Both arff files were then tested using several different 

machine-learning algorithms in Weka. In addition, a stacked 
auto-encoder was implemented in Perl and used on the 
experimental arff file in order to reduce the feature space 
from 85 attributes to 43. The output from the auto-encoder 
was then used as input for a single-layer neural network.  

IV. RESULTS 
The stacked auto-encoder reduced the feature space from 

85 attributes to 43. When the auto-encoder’s output was 
used as input for a single-layer neural network, the network 
achieved a prediction accuracy of 86.73%.  A summary of 
the results is shown in Figure 5. 

 
Algorithm Prediction Accuracy 

on control  
Prediction accuracy 
experimental data 

Neural Network 69.05% 89.05% 
Random Forest 65.23% 86.13% 

Naïve Bayes 59.50% 71.96% 
IBK (nearest neighbor) 66.73% 77.49% 

Figure 5: Prediction Accuracies for several algorithms on 3E6R data 9Ten-
Fold Cross Validation 
 

The sizable increase achieved in prediction accuracy when 
using the experimental attribute set suggests that the three-
pronged approach of using recurrence attributes, amino-acid 
similarity attributes, and whole-subsequence similarity 
attributes is more effective than the control approach. These 
results are encouraging, but it should be noted that some of 
the metrics used in this project—particularly those focused 
around hydrophobicity patterns—may be less effective if 
used on trans-membrane proteins that have a large number 
of non-amphiphilic α-helices.     

The recurrent neural network approach probably achieved 
the highest accuracy out of all the models because the back 
propagation algorithm is a more natural fit for real-valued 
attributes than the random-forest and naïve-Bayes 
algorithms (which are generally a better fit for categorical 
attributes). Interestingly, the IBK algorithm had the smallest 
margin of improvement out of all the algorithms. Since 
nearest-neighbor algorithms like IBK are known to struggle 
with irrelevant attributes, the weak margin of improvement 
may indicate the presence of irrelevant attributes in the 
feature space.   

The results from the auto-encoder also seem to suggest 
that the attribute set can be reduced without sacrificing too 
much accuracy. A three-percent decrease in accuracy seems 
very reasonable after going from 85 attributes to 43. 
Furthermore, the 86% accuracy achieved with a Perl-coded 
single-layer neural network on the auto-encoder output may 
not be the highest accuracy that could have been achieved, 
since the Weka neural network used on the larger data set 
had more hidden layers and was trained over more epochs.  

 

V. CONCLUSIONS 
This research demonstrates the effectiveness of machine 

learning algorithms in secondary structure prediction.  
Multidimensional scaling combined with a stacked auto-
encoder are effective in reducing the feature space to a level 
compatible with the training data.  Neural Networks appear 
to be most effective in extracting features that are important 
to accurate prediction. 

 
Future research should focus on discovering additional 

relevant metrics that measure amino-acid similarity and 
whole-sequence similarity, identifying and removing 
irrelevant attributes, and defining the set of proteins for 
which these metrics are effective with greater specificity. 
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