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Abstract— Electrooculographic (EOG) artefact is one of the 

most common contaminations of Electroencephalographic 

(EEG) recordings. The corruption of EEG characteristics from 

Blinking Artefacts (BAs) affects the results of EEG signal 

processing methods and also impairs the visual analysis of 

EEGs. In this paper, our scope was a comparative analysis of 

the performance of three standard denoising methods like 

continuous Empirical Mode Decomposition (EMD), Discrete 

Wavelet Transform (DWT) and Kalman Filter (KF). In order 

to evaluate the performance of EMD, DWT and KF of noise 

reduction and to express the quality of the denoised EEG, we 

calculate several indexes such as the Signal-to-Noise Ratio 

(SNR). All the results obtained from noise simulated EEG data 

show that WT achieved the greatest SNR difference and also 

the mode mixing issue of EMD affected this method’s 

performance.  

 

I. INTRODUCTION 

Electroencephalogram (EEG) is a noninvasive 

measurement of the brain’s electrical activity obtained using 

several electrodes placed on the scalp. Over the last decades 

and under an increasing medical demand, EEG became an 

important diagnostic tool for monitoring and managing 

dysfunctions and various neurological disorders of the 

human brain. 

One of the most tempting problems in biomedical signal 

processing is the extraction of high resolution EEG from 

contaminated recordings. An increasing number of denoising 

techniques have been proposed for solving this problem [1].  

It is still a challenge to get qualitative or quantitative EEG 

analysis because of various noise sources that make the 

denoising process extremely difficult [1]. 
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Electromyographic (EMG), electrodermal response, eye 

blinks, eye movements, and respiratory are the most 

common biologically noise sources that generate EEG 

artefacts [2]. 

EOG artefacts are one of the main problems of EEG 

analysis, since EEG recordings are usually contaminated 

from eye movements and Blinking Artefacts (BAs) which 

are impossible to prevent. It is essential to estimate EOG 

accurately, in order to subtract it from the contaminated 

EEG. The difficulty of achieving this is due to the high 

amplitude and the low frequency components of the EOG 

that overlap the frequencies of EEG [2]. 

Kalman Filter (KF) is not a recently implemented method 

and it has been employed for EOG detection [3], correction 

[4] and BA removal [5] with promising results.  

Wavelets were introduced in early 90s with numerous 

applications in EEG processing. EEG is a non-stationary 

signal and several studies, using wavelet adaptive 

thresholding algorithms, have been applied in order to 

identify and remove EOG [6]. Also, wavelets have been 

used as a method for detecting epileptic spikes [7] and 

denoising Electrocardiographic (ECG) [8].  

The Empirical Mode Decomposition (EMD) was 

introduced as a data driven method for decomposing the 

signal in components called Intrinsic Mode Functions 

(IMFs). EMD is a modern adaptive method for detecting and 

separating the EOG artefacts from EEG signals, with several 

modifications [9] and combinations with other methods [10]. 

In this work, the performance of these three methods 

EMD, WT and KF is quantitatively compared in removing 

EOG artefacts with different amplitudes from simulated 

EEG. In order to obtain the denoising results we apply the 

classic EMD [11], the KF with some modifications [5] and 

the Discrete Wavelet Transform (DWT) [12, 13]. 

The efficiency of EMD, WT and KF in rejecting the EOG 

artefacts was evaluated by calculating several metrics. The 

results were compared between the contaminated and 

original signals and between EOG clean and original signals.  

II. METHODS 

A. Database Construction 

In this paper, simulated ΕΕG signals were generated by an 

algorithm described before [9]. Every signal contains 10000 

samples with a sampling frequency 2kHz. 
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Fig. 1.  Comparison of the EEG segment that contains one BA with 

amplitudes of -100μV, -120μV, -140μV, -160μV, -180μV and -200μV. 

 

Artificial BAs were added every 1000 samples with 

amplitude that ranges from -100μV to -200μV with a -20μV 

step. The algorithm was adjustable in several parameters 

such as frames, epochs, sampling rate and noise amplitude. 

For every trial 32 channels were produced. The selection of 

the length of each signal is defined by the product of total 

epochs and frames which is fixed to 1000 samples 

containing one BA.  
 

B. EMD 

According to the principle of separation of scales, 

Empirical Mode Decomposition (EMD) reveals the various 

inherent oscillations tendencies in a given discrete signal

( )x t . Each oscillation is represented by a function, called 

IMF, by means of a decomposition process called sifting 

algorithm. IMFs satisfy the following equations: 
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,where 
eN  is the number of exrema and 

cN  is the number of 

zero crossings in (1). Also, maxe  and 
mine  represent the upper 

and lower envelopes respectively. Thus, the equation of 

signal ( )x t  is configured as: 
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,where ( )r t is the residual of EMD output. 

Furthermore, EMD generates IMFs, in decreasing 

frequency order by selecting the highest frequency 

oscillation that is retained in the signal and extracting each 

IMF that has lower frequency oscillations than this.   

Since, the BA lies in the low frequencies (< 4 Hz) [x], the 

IMFs that appear in this band are rejected. Thus, the filtered 

signal is the sum of the remaining IMFs and more 

specifically, only the first three IMFs were kept [9]. 

 

C. Discrete Wavelet Transform (DWT) 

Wavelet is a “small wave” with short duration and an 

average value of zero. A y  function sufficiently regular and 

localized, which is called “Mother Wavelet” (MW) is 

needed in order to decompose a signal. MW could be chosen 

from a numerous set of basis functions, which are usually 

non-symmetrical with a finite period. 

DWT is a fast linear transformation that results in 

detecting specific signal transitions localized in time and 

frequency. The wavelet function ( )y t , with scale a , shifting 

parameter b  and t  as the independent variable that 

represents time, is defined as [14]:  
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By choosing a  and b  based on the powers of two 

(dyadic scales and positions) and defining k  as the discrete 

representation of time, the decomposition of the signal 

becomes more precise [14]: 
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Then the DWT for a given function ( )f k is [14]: 
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DWT is as one of the most applied techniques in 

analyzing non-stationary signals like EEG [6, 7]. 

In this paper, we applied the DWT to eliminate EOG 

artefacts using Daubechies (db6) as a basis function with 9 

decomposition levels. The number of details that were 

selected, optimized the performance of WT in EOG 

rejection. The sum of the selected details is the denoised 

signal, without the BAs. 

D. Kalman Filter 

KF is the appropriate estimator for linear dynamic 

systems in which noise is an inseparable factor. Any 

information about the system can be provided and be 

processed along with each measurement. Since it is an 

optimal recursive algorithm for signal processing, it uses 

past and present observations to execute estimations. 

In its original formulation, KF aims at estimating the state 
nX  of a discrete-time controlled process, described by a 

linear stochastic differential equation of the form: 
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and the measured signal is described by the equation: 

 

k k kz HX v                                 (8) 

 

,where the random variables 
kw  and 

kv  represent the system 

noise and measuring, respectively, which will be assumed 

uncorrelated with time (white noise) and with each other. 

The n n  matrix A relates the previous situation in discrete 

time 1k  to the current state of system at time k . The 1n  

table B, relates the control input u  to the state of System X  

and finally the m n  matrix H  correlates the measurement 

kz  with system state X . 

In this paper, the KF is applied to the simulated EEG in 

order to remove the BAs. The following equation describes 

the relation between the signals, where ( )cEEG t is the 

contaminated EEG, ( )tEEG t  is the true EEG and ( )EOG t  is 

the signal that the BA: 

 

( ) ( ) ( )c tEEG t EEG t EOG t                      (9) 

 

III. RESULTS 

In order to quantitatively compare the three methods for 

different amplitudes of the BA, various performance 

measures were implemented. These measures were 

Normalized Root Mean Squared Error (NRMSE), Percent 

Root Mean Square Difference (PRD), Pearson product-

moment correlation coefficient (R) and Signal-to-Noise 

Ratio (SNR). The equation that was used for the SNR 

calculation was the following: 
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,where ( )cEEG t  is the clean signal and ( )dEEG t  the 

denoised signal. 

It has to be mentioned that for the KF, which is a model-

based method, the clean EEG was known and used for 

determining the state-space equations. On the other hand the 

Wavelet Transform and the EMD are model-free methods. 

EMD achieved the worst results in the simulation. Using 

EMD, the average drop in SNRdB retaining the first 4 IMFs 

instead of the first 3 is almost 10dB and 0.7dB if we retain 

only the first 2. The choice of retaining 3 IMFs as a BA 

rejection EMD works well with a tendency to surpass KF, 

for a BA amplitude less than 140 μV, but still worse than the 

other two methods. For BA amplitude greater than the 

previous threshold, the SNRdB drops from an average of 

15dB to less than 14dB. This occurs mainly because of the 

major drawback of EMD called “mode mixing” [15], which 

in one of its aspects is the simultaneous presence of widely 

separate frequencies in the same IMF.  

 
Fig. 2.  Comparison of the Original Signal and the resulted signal of (a) 
EMD, (b) Wavelet (db6), (c) Kalman Filter and (d) all of the previous 

methods. 
 

The basis function db6 was used after testing various basis 

functions and achieving the best results according to SNR 

differences. Concerning the specific choice of the basis 

functions for the DWT, our simulations led to the conclusion 

that this selection significantly affects the denoising 

performance.  

KF achieved satisfactory results in respect with BA 

rejection independent of the BA amplitude. Unlike the other 

two methods KF is a model-based methods which an 

important disadvantage especially when the clean signal or 

the reference is not known.  
 

 



  

 

IV. CONCLUSION 

EEG processing and analysis require accurate 

information, which can be extracted from non-invasive EEG  

recordings. Usually, EEG signals are contaminated by 

various artefacts and thus noise reduction this is not an easy 

procedure.  

Previous investigations in this research area showed that 

decomposition methods like WT and EMD, and estimating 

methods like KF are efficient approaches for the extraction 

of BAs from a contaminated EEG signal.  

In this work WT, EMD and KF were successfully used in 

removing EOG BA in EEG. According to the SNR 

differences before and after the BA rejections, WT has a 

slight but clear advantage and has a minimum signal 

distortion as compared with the other two methods as 

demonstrated as “Fig.3.”.  

The promising results achieved in this work indicate that 

these three methods outcome in significant improvement in 

artefact elimination. 

Future work includes the comparison of these methods in 

detecting EOG artefacts inside simulated and real EEG 

signals. The effects of the decomposition levels of EMD and 

WT, and the selection of the basis function of WT in the 

quantity and the quality of EOG reduction will be explored. 

This series of simulations also present the important need 

of using the newer variations of EMD like Ensemble 

Empirical Mode Decomposition (EEMD) which greatly 

reduces mode mixing [15]. Modified KFs will also be 

implemented in order to achieve better results in EOG 

rejection.  

 

 

 
 

Fig. 3.  SNR difference perfomance comparison of the EMD, Kalman 

Filter and Wavelet for the selected BA amplitudes. 
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TABLE I 
AVERAGE ERROR MEASURES COMPARISON OF THE CONTAMINATED REGIONS FOR THE THREE METHODS 

Measures 
Before BAs 

Rejection 

EMD WT (db6) KF 

After BAs 
Rejection 

Difference of the 
measures 

After BAs 
Rejection 

Difference of the 
measures 

After BAs 
Rejection 

Difference of the 
measures 

NRMSE 0,185199 0,009824 -0,175375 (-94.69%) 0,003671 -0,181528 (-98.01%) 0,017073 -0,168126 (-90.781%) 

PRD(%) 403,535724 80,010396 -323,525328% 79,884308% -323,651416% 62,829967% -340,705757% 

R 0,377690 0,651936 0,274247(+72.59%) 0,601542 0,223853 (+59.268%) 0,789858 0,412168 (+109.128%) 

SNR(dB) -11,881587 2,073193 13,954780 6,896687 18,778274 4,063847 15,945433 


