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Abstract— Differentially methylated regions (DMRSs) are seg-
ments or islands of consecutive sequence positions, shogin
methylation enrichment or depletion compared to each other
in different samples or tissues. The identification of DMRs $
a crucial first step in the discovery of biomarkers for non-
invasive prenatal diagnosis of aneuploidies such as Trisom
21. In this paper we describe an algorithm to automatically
identify the manifestation of DMRs on arrays. Our approach,
methylation status mask AND (MS-AND), influenced by the
SHIFT-AND methodology, uses bit operations and masking and
can be applied to any microarray dataset in General Feature
Format (GFF). We show the effectiveness and utilization of ar
algorithm using data from Methylated DNA Immunoprecipita-
tion arrays for the identification of DMRs in chromosomes 13,
18 and 21. The algorithm runs on Linux and on Windows
systems and an implementation is available at sourceforge
(htt p: // sour cef or ge. net/ proj ect s/ ms- and).

. INTRODUCTION

DNA methylation occurs at CpG dinucleotides and is
one of the most extensively studied epigenetic modifica-
tions [18]. It is found throughout the genome except in short
unmethylated regions called CpG islands (CGls) [22], which
are usually (but not always) unmethylated. CGls are DNA
sequences approximately 1000 bp long within which the
dinucleotide CG is present in a frequency of around 65%
of the sequence base composition.

In a eukaryotic species approximateély, of the cytosine
residues are methylated but the extent of methylation can
be tissue specific and can vary fropf to 7% [9]. This
epigenetic modification regulates gene expression, gkenc
the activity of genes and transposable elements and gedbili
gene dosage in X-inactivation and genomic imprinting [3].
DNA methylation information is multiplex with hundreds of
potential methylated cytosines in a gene. It is also quan-
titative because tissues can maintain partial methylagibn
a locus which means that the extent to which a site is
methylated can vary [3]. Methylated regions are present

The completion of the whole human genome projedp imprinted genes, which are essential for growth anql
coupled with the introduction of high throughput microgrra development. Imprinted genes carry parental allele specifi
and sequencing technologies has provided scientists withethylation profiles and are characterised by differelgtial
powerful means to study and analyse DNA. The humaffethylated regulatory regions (DMRs) [14].

epigenoméowever, still uncharted, provides a larger amounf  pNA methylation analysis and discovery of differengiall
of information than merely the sequence of a gene. There jgethylated regions

thus strong interest for its analysis and stuBipigenetics

is the study of heritable traits other than those carried b&/
DNA sequences and entails DNA methylation and chromati

modifications.
DNA methylationis a chemical modification of DNA

that occurs when methyl groups are added to its bas
Methylation most often includes the cytosine of CG pair%

in DNA, usually in both strands [9]:

5 ™ CpG — 3

3 —GpC™ -5
wherem denotes the methylated cytosine.
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The detection of DNA methylation is based on the abil-
to distinguish cytosine from its methylated version of
-methylcytosine (m5C) [3]. Investigation of methylation

differences between samples, leads to the identification of

differentially methylated regions (DMRS).

‘A number of different techniques are used for identifying

MRs. The preprocessing can be performed by:

« Digestion of DNA by a methylation sensitive restriction
endonuclease.

« Bisulfite conversion: sodium bisulfite converts unmethy-
lated cytosine to uracil, whereas methylated cytosines
are protected from conversion.

o Methylated DNA immunoprecipitation (MeDIP): using
an antibody, DNA containing methylated cytosines is
immunoprecipitated and selected.

The use of methylation sensitive restriction enzymes, re-

quires the presence of restriction sites in the target sempse

therefore there is a limitation on the number of regions that
can be tested. On the other hand, the accurate analysis of the

methylation status after bisulfite conversion, dependshen t

conversion of all unmethylated cytosines to uracils, which



rarely occurs, as DNA is degraded by extensive bisulfite In this work, we focus on the MeDIP-chip approach,

treatment [15]. wherein the samples are preprocessed with methylated
After preprocessing the samples using one of the abo@NA immunoprecipitation and the selected regions are co-

methods, the methylation information is obtained by a colybridized on an oligonucleotide array with control DNA, to

responding technology: find DMRs. The presented solution intentionally avoids the
o DNA oligonucleotide arrays, after bisulfite conversioncomplexities of statistical analysis, for the express pagof
or MeDIP. allowing its use by a wide range of practitioners, including
o SNP arrays. those who are inexperienced in this domain. It is simple to
o BeadArray (lllumina), after bisulfite conversion. use and identifies DMRs based on the methylation values
« Sequencing (Sanger or Next Generation), after bisulfitef the array regions, without requiring statistical demis
conversion or MeDIP. or assumptions to be made prior to algorithm use. The pro-

These high throughput approaches have been used gmm has been implementelt  p: / / sour cef or ge. net/
analyse DNA methylation across the genomeédhaliang  proj ect s/ ns- and) to allow for user-input threshold values,
the mouse genome, and parts of the human genome. Thbich return more finely grained results. The execution time
first genome wide, single base resolution map of the humas very low, which permits multiple manual permutations.
methylome was presented in [12], where bisulfite sequenciridpwever, in the paper, for clarity and simplicity, we preisen
was used to sequence two human cell lines, embryonic stghe solution where the threshold values are predefined to
cells and fetal lung fibroblasts. Given the great interest i@ero.
this cutting-edge technology of next generation sequepcin _ _ . . _
several algorithms based on statistical analysis have been D.|fferen'_[|ally methyIaFe.d regions for non-invasive pae
developed that detect differentially methylated regioftera '@ diagnosis of aneuploidies
bisulfite sequencing. Prenatal diagnosis of chromosomal aneuploidies is cur-

BSmooth[8], first aligns the bisulfite treated reads torently performed by cytogenetics or DNA analysis of fetal
the genome, compiles quality assessment metrics based BNA material. This is obtained by amniocentesis, chorionic
methylation estimates by read position, and applies localllus sampling or chordocentesis. All these methods are
average to detect DMRs taking into account any availablavasive and have a significant risk of fetal logk5( to
replicates. TheeDMR algorithm [11], extends an R pipeline 1% for chorionic villus sampling and amniocentesis) [15].
(methylkit) [20], to discover boundaries between the DMRJhe discovery of free fetal DNA in maternal circulation
from bisulfite sequencing reads using bimodal normal distriduring pregnancy [13], has shifted the focus of research
bution, and then calculating the statistical significanttéhe to the discovery of non-invasive prenatal diagnosis (NIPD)
DMRs with the Stouffer-Liptak testCOHCAP [23], takes methods. By sampling peripheral blood from the pregnant
targeted bisulfite sequencing data and Illlumina methydatiovoman it is now possible to differentiate fetal from matérna
array data, as input, to identify CGls that show a consisteRNA, and analyse the fetal DNA in the laboratory. One of
pattern of methylation among CpG sites; the authors defirilbe most promising demonstrations of NIPD is based on the
a cutoff value for methylation status and categorise these of DMRs, which show differences in methylation status
regions to methylated and unmethylated depending on thietween fetal and maternal DNA [17].
value; they use a p-value and a false discovery rate to One such successful method, for NIPD of aneuploidies,
statistically assess their finding€pG.MPs [21], identifies the MeDIP and real time gPCR method by Papageorgiou et
CpG methylation patterns in bisulfite sequencing data, bgl. [16], has been used to detect Trisomy 21 from maternal
first normalising the sequencing reads into methylation leyperipheral blood. This group has previously investigated
els of CpGs, and then identifying differentially methylite DMRs on chromosome 21 as well as on chromosomes 13,
regions using the hotspot extension algorithm coupled with8, X, and Y, by using methylated DNA immunoprecipi-
the Shannon entropy method. tation, coupled with high resolution oligonucleotide gsa

Algorithms for identifying DMRs using microarrays have The method is based on identifying regions that are hyper-
also been developed. These are again mostly based methylated in placenta DNA, both in first and third trimester
statistical analysisBioTile [6], is a Perl application that and hypomethylated in female whole blood. From these
identifies DMRs in tiling microarray datasets, by first calregions, gPCR primers were designed and the amplicons
culating the slope of a linear model between dependent asdrve as markers that differentiate fetal from maternal DNA
independent variables for each array probe, and subsdguent In order to discover these regions the authors in [15]
returning regions of adjacent probes with slope values @boused the SW-ARRAY algorithm [19], which is a dynamic
or below zero, for three or more consecutive probes, ggogramming algorithm to detect copy number variations in
potential DMRs; finally, the distribution of DNA methylatio array comparative genome hybridization (array-CGH) DNA
across each probe in a DMR, is evaluated by a permutatiaiata. The algorithm detects very large regions of copy num-
corrected statistical meta-analysis. The software pazkafer variations. These were taken as starting points foresubs
QDMR[24], similarly to CpG.MPs is based on the Shannonquent manual selection, by visualizing them with SignalMap
entropy method to identify DMRs and quantify methylation(Nimblegen Software), of the required regions. It is difficu
differences between the regions. to manually perform this task considering the complexity



of high throughput array data. There is thus a strong need A sequence of probeB’ = p; , ..., p;, is said to be @ub-

for an automated method to solve the problem of findingequencef P if p; ,...,p; are consecutive if?. Formally,

regions in all three datasets of hypermethylation status iR" = p} ,...,p} = (&}, W, pi, )., (Wi ,p; ) is a

first and third trimester placenta DNA, and hypomethylatedubsequence d? if and only if (w}, < aj,)A.. . A(w], | <

status in maternal whole blood, in order to directly use themy, ) A {# p”; = (a”s,w"i,u";) € P A ¢ P’ such that

as potential markers for NIPD. The algorithm in this papefa”; > o}) A (i < wy,)}.

addresses this need. P1st (P3rq) IS @ sequence of probes with lggtio nor-
The rest of the paper is organized as follows. In thenalised data from the first (third) trimester placenta DNA

next section we provide the preliminaries: a descriptioarray, andP,,, is a sequence of probes with lggtio

of the biological data in Section II-A, and the necessarmpormalised data from the whole blood peripheral DNA array.

definitions for the algorithmic solution in Section 1I-B. &h, A subsequence, ..., pirr Of Pist (Psrq) iS @ region

in Section Il we formally define the problem and presenwith span [«;..w;1%], and is said to be aandidate re-

our solution, and in Section IV we present and discuss ogion of Py (Ps.q) if it is of length at least three and

experimental results. Finally, we conclude in Section V anthe methylation status of each probe in the subsequence

discuss further works. is greater than zero. Formally, subsequepge.., p;rr =

(v, Wiy i)s oy (g, Wik, titk) OF Prsr (P3rq) is @ can-

didate region ofP;s; (Ps..q) if and only if (k > 3) A (e > 0

A. Description of input data Y ¢ € [i..i+k]). Similarly, a subsequengg, ..., pi+r Of Pup

We applied our method to the chromosome 13, 18, arlg said to be a candidate regi.0n B,y if it has length of at
21 datasets of first and third trimester placenta DNA arraj€ast three and the methylation status of each probe in the
and whole blood DNA arrays obtained by Papageorgiou &tbsequence is less than zero.
aI: [15] after MeDIP-chip assays. The high resolution glin . THE MS-AND ALGORITHM
oligonucleotide arrays, specific for chromosomes 13, 18 and

21, had di b f 225 bp for ch 1 X ;
ad a mecian prone span b for cromasome ND), and program, are the lgratio normalised arrays,

170 bp for 18 and 70 bp for ch 21. The i
genorrﬂc Ocrontro?nDNA ar?d (':t:ec irrr?rr:lj):grr)r;gcipitatede g;\iﬁom which it is required to identify the DMRs. Using the
definitions of Section Il, we formally define our problem:

of each sample were differentially labelled with fluoregcen . . ,

dyes, (Cy3, Cy5), and were co-hybridized on the arrays [15;. Problgm 1f@M7|z Dgtectlon)dl,g DMR, IS def:cned o be

The ratio of the signal intensities in each datasets w Qe region ot overiapping cand ate reglonsmst, Para,
and P,, with a length of at least three. Given the three

then log normalised and the normalisddgqratio array segHences Of probeBy.;, P, and Py, find the DMRS
datasets were used for analysis. We used datasets gener ) Lstr [drd, SEFTwhy '
y g Fe?ﬁe solution presented below is influenced by the SHIFT-

by Papageorgiou et al. [15], to test our method. The tota| ) .
y Fapageorgiou 1] ’ D algorithm of [2], originally called SHIFT-OR, but that

number of probes for the chromosome 13 arrays was 3851 .
. P ys W as come to be known as SHIFT-AND [7]. In that algorithm,

probes, for chromosome 18, 385482 and for chromosome 21, ) | ; ;
385183 probes. the authors use bit masking and operations to quickly and

In the datasets, logatio values represent methylationeﬁidemly identify exact patterns in strings, when thet_pats_
values. Hypermethylated probes are the regions that havé's relatively small. Many other solutions to generic grin

logoratio value larger than zero and hypomethylated regior{gocessmg problems, and more specific ones, for example

are the regions that have a logtio less than zero. In our n thg areas of music. information retrieval [4], z_;md com-
analysis, we require at least three consecutive probesv® h utational molecular biology [1], have also been influenced

a methylation value larger than a threshold of zero to b the SHIFT-AND algorithm, and taken advantage of bit

selected as a candidate region for placenta DNA array. perations and implementation constructs, such as the C++
whereas for whole blood array data we require that th tandard Template Library's bitset container, which uses

corresponding probes have methylation values less than/TiniMal space and time to perform said operations.
threshold of zero. A. Outline

Il. PRELIMINARIES

The inputs to thanethylation status-andlgorithm (MS-

B. Definitions An outline of the algorithm:

A regiont is a sequence of base pairs, starting at locatioHREPROCESSINGALIGN THE ARRAYS

r and stopping at location’. A region'sspanis [r..7']. A A prerequisite for the MS-AND method is that the three

probep is a 3-tuple(a, w, u1), wherea is the start location, inyyt arrays are aligned, that is, the start and stop logatio
w is the stop location, ang is the methylation status in ¢ ihe probe regions are the sanfes s, = azrd, = Qwp,)
. 1st; — Td; T wo;

the [a..«o] region. Asequence of ProbeB = pi,....pn IS A (10 — wyy — wep) ¥ i@ € [Ln], Wherepra, —
a sequence of 3-tupleS, wy, p), .., (.a"’w"’ﬂn)' The (o1st;> Wistss Hist;) € Pisty Pard; = (Q3rd;s Ward;, Mard;)
length |7_3| of a sequence of probeB, is the number of Pard, AP, = (Qudys Wby fub,) € Pup. Thus, this
probes in the sequence. is a requirement when gathering the data.

1A region corresponds to the probe span. STEP 1: MASK THE ARRAYS



In this stage, we mask the three DNA arrays. Specifically, fohlgorithm 1 Methylation status-and (MS-AND)

the placenta DNA arraysH,; andPs,.q) we set the bit to a 1: function IDENTIFY DMRsS
> Mask the three pre-aligned arrays:

1 if there are three or more consecutively hypermethylateg:  jus,,, « MaskARRAY(1°" trimester’)

probe regions, and to @otherwise. Similarly, for the whole 3:  MSs.a - MASKARRAY(“37 trimester)
: MS b < MASKARRAY(“whole blood”)

blood DNA arrayP,;, we set the bit to d if there are three | |geniify candidate DMRs:

or more consecutively hypomethylated probe regions, and t‘gj ?D/VOIR = MS1st & MSzra & MSwp > Equation 3
. . R
a 0 otherwise. 7 m e |eDMR)
. 8: DMR1. ., < 0..0 > initialise all bits to0
Formally, we defineMS1y;, MS3,.q, and MS,;, to be > Identify DMRs:
i _ _ i 9:  while i < n do
arrays of bits, of lengthPiy| (= [Psral = [Pusl) with 5 WIS 00 el 2 i ten > Equation 4
elements set according to equations 1 and 2: 11 DMR; + 1
12: output region[a; —2..w;]
13: incrementi

1, if pu; >0, Vjelim2.i
Mslsti(Brdi) = { 0 Fi J [ ]

. 1 -
otherwise ( ) }451 fun(;tlgw (;\AASKARRAv(army)

16: MSl..\a‘rTay\ + 0..0

17: while not end of filedo
1, |if w; <0, Vje [2 — 21] 18: (i, ws, i) < (start location, end location, methylation status)

MSp, = { ; (2) 19: if array is “1°! trimester’or “3"% trimester”then > Equation 1
0, otherwise 20: if uj >0, Vj € [i —2..i] then > 3 consecutive hyperm/d probes
Whereplst (7)37‘111 wa) = (alawla ,Ul)a ey (an7wn7 Mn), 22: storea; o andw;
for all ; € [1n] 23: else if array is “whole blood” then > Equation 2
24: if pi <0, Vj € [i —2..¢] then > 3 consecutive hypom/d probes
STEP2: IDENTIFY CANDIDATE DMRS 25! MS; 1
26: storea; o andw;
In this stage we identify regions that are concurrently hypeZ27: increment

return MS

methylated in the two placenta DNA arrays and hypometh};&
lated in the whole blood DNA. The output of this stage
is a bitmask array, BMR (candidateDMR), which is
constructed by performing an AND\| bit operation on the
three MS arrays:

We can represerit; , + ks,, + kwy = K, which gives us a
runtime of O(3n + n/w + K'). Furthermore, we know that
n/w < n, andk, < n, thusO(K) = O(n), so this gives a
total runtime ofO(n) for MS-AND.

The space complexity i8nxbit +K * (2xint + double),
which is O(n/w + K) This means that if there are n/w
occurrences, the algorithm has a memory consumption of
In the final stage, the DMRs are identified as being regionge order of the number of occurrences i.e., the number of
within the candidate DMRs array with three or more CONhypermethylated (hypomethylated) regions.
secutive 1 bits:

DMR = MSE15¢ N MSE3pq N MS (3

STEP 3: IDENTIFY DMRS

IV. EXPERIMENTAL RESULTS
DMR,; — { L if cDMR; =1, Vj € [i - 2.1 4) In order to use MeDIP as an enrichment method before
0, otherwise non-invasive prenatal diagnosis, the selected markerstoee
The resulting array of bitsT¥MR) is a map of the be hypermethylated in the fetus and hypomethylated in the
differentially methylated regions of the chromosome: far ~ Maternal whole blood [15].

elementi of the array signifies that the regida; »..w;] is ~ The program was implemented in C++ and runs on
hypermethylated in 1st and 3rd trimester placenta DNA andnux and Windows environmentsit(t ps: / / sour cef or ge.
hypomethylated in whole blood DNA. net/ ms- and). It takes as input the three array data files

in General Feature File (GFF) format and three threshold
values,tis, t3,q, andi,p.
B. Algorithmic complexity analysis Therefore in our experiments we identified those regions

Algorithm 1 runs in linear time, with a low hidden where:

constant, and thus a fast execution time. Lines 2, 3, and 4+ atleast three consecutive oligonucleotide probes in each
take O(n) time each, wheren is the number of probes array have the same methylation status.

in each of the GFF files. The key to the algorithm’s and * they have a positive methylation status greater than
program’s speed is the use of bit masking and operations, t1st(tsra) in the first and third trimester placenta data
and the C++ STL's bitset container. For machine word size ~ (fetal), and a negative methylation status less than

w, line 5 takesO(n/w) time. Lines 9 to 13 also run in in female whole blood data.

linear timeO(n). The hidden constant is of the order &f Our algorithm however, can be easily modified to identify
with the addition ofn/w + k1., + ks, + kws, Wherek, is  regions where hypomethylation of fetal DNA and hyperme-
the number of occurrences in each of the three input arraytbylation of maternal whole blood is required.

Pseudo-code is shown in Algorithm 1.



oy TABLE |
NimblgGerr
R S A O S S P N AP SR AP S TESTS ONCHROMOSOMEL13 WITH VARYING THRESHOLD VALUES
Bl A A
B R A R i ARG FORt1st, t3rd, AND typ

oo - chr

threshold values # identified regions
t1st t3rd twb

0 0 0 524

0.25| 0.25 | -0.25 2

IPosiicns 18,403,459 - 111 774,473 | Cata el s 1 0015 109 0.1 0.1 -0.1 92
0.1 | 0.15 | -0.075 80

4002 p acenta experimental 15/dacertziotal 12:FORWARD - 365,176 Ravis. Total Posifens ( 17,918,051 - 114,127,249 ), Dala Values <465 ta 3.64

move away from the centre of the image, we view in blue
the tracks corresponding to the genes of each chromosome.
The next circle of tracks, shows the CpG islands of each
chromosome in purple. The figure shows the high density of
Fig. 1. A differentially methylated region of chromosome. The top DMRSs found in chromosome 21 compared to the other two
track shows a DMR region identified by our algorithm. Belowtite track — chromosomes which is attributed not only to the fact that
shows the three (at least) positive probesl¥f trimester; the track below
this shows the positivé™ trimester probes, and the bottom track showsW€ have reported more DMRs on chromosome 21 than the
the negative valued probes of whole blood for the regiontified. other chromosomes (13 and 18), but also due to the higher
resolution array used for chromosome 21 and due to the
smaller size of chromosome 21 compared to the other two.

We tested our program on MeDIP array data for chroWVe also observe that many of the chromosome 21 DMRs
mosomes 13, 18 and 21, with threshold values set to zeggem to fall outside CpG island regions, a majority of which
For chromosome 13 we identified 524 regions hypermeire unmethylated [5].
thylated in fetal DNA and hypomethylated in the female Tests were also run where the threshold values were non-
whole blood dataset. In chromosome 18 we identified 37&8ero. Table | shows the number of identified regions, for a
regions which were hypermethylated in the first two datasetéw test runs for different threshold values, on chromosome
and hypomethylated in the third. The largest number ok3. Although these results are promising, they need to be
DMRs were recorded for chromosome 21 where we foundglidated by biologists as to their usefulness.

871 regions which were hypermethylated in fetal DNA and
hypomethylated in maternal blood.

The results were viewed and validated with the SignalMap
software (Nimblegen System). Figure 1 presents a single We have presented an efficient algorithm for identifying
differentially methylated region of chromosome 13. The toplifferentially methylated regions, and shown how this is
track shows our results, the chromosome 13 DMRs founighportant as it is the first step in the discovery of biomasker
by our algorithm. The second track shows chromosome ¥8r certain NIPD techniques. After providing the biolodica
first trimester placenta array data. The third track is thsetting, we defined our problem and the necessary constructs
third trimester placenta data for chromosome 13 and the then present the MS-AND algorithm. We then discussed
bottom track is the female chromosome 13 whole bloodur solution, its algorithmic complexity, and our experime
array data. As we see from the figure, the region identifiethl results on real data.
by our algorithm has positive hypermethylated values for In our future research we will work on ways to more
the first trimester and third trimester placenta tracks anglccurately identify clinically interesting biomarkersitivthe
negative hypomethylated values for the female whole bloadS-AND algorithm as a basis. The user-defined threshold
track. This differential methylation is as required for M@D values method is being validated by biologists, and if this
quantitative assays. indeed proves useful, machine learning statistical tepres

Using the results of our automated procedure one caan be used to automatically determine optimal threshold
directly cross reference these DMRs with the gene regionslues during a learning period for specific datasets. Fur-
of each chromosome as well as the CpG islands of eathermore we plan to compare our implementation against
chromosome. We downloaded gene data tracks for chrother algorithm implementations, for accuracy of biomarke
mosomes 13, 18, and 21, and the CpG islands (CGlglentification and algorithmic efficiency.
of chromosomes 13, 18, and 21, from the UCSC genome Another two approaches being considered by our group,
browser (NCBI build 36), (http://genome.ucsc.edu). Feg@r also require human validation with regards to its usefudnes
shows this investigation for all three chromosomes. Visudlefore further development. The first one is to sort and
representation of DMRs, gene and CpG island tracks foank the output regions by the difference in methylation sta
chromosomes 13, 18, and 21. In the outer-most circle wieis between the hypermethylated and hypomethylated data.
can see the ideogram of each chromosome. In the innétith this approach the runtime will depend on the number
most circle, the DMRs reported from our algorithm areof outputs. ForK identified regions, the running time is
shown in green. Above these tracks, the second circle as WEn+ KlogK'). The second approach will classify the output

Fplcena tolel-13 - 306,178 Rows, Totl Posiions | 17,018,061 114,127,230

‘whok_biond_rxperimenia-T3/whole_Hond_tofa=13 - 385,178 Sows, Toial Posilions ( 17 818,051 - 114, 127,238 |, Nieta Vel s -3 98 1 5 30

V. CONCLUSION
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Fig. 2. Visual representation of DMRs, gene and CpG islaadks for
chromosomes 13, 18, and 21. In the outer-most circle we cantlse
ideogram of each chromosome. In the inner-most circle, kB reported
from our algorithm are shown in green. Above these trackssétond circle
as we move away from the centre of the image, we view in bludrduks
corresponding to the genes of each chromosome. The nel ofrtracks,
shows the CpG islands of each chromosome in purple. Imaggecravith
the software circos [10].

(7]

(8]

El
[10]

[11]

[12]

[13]

[14]

[15]

. . . . . [16]
regions depending on the difference in methylation status
between the hypermethylated and hypomethylated data, into

a small range of classes. This approach has the advantag?ﬁ]f

keeping the runtime of the algorithm linear.
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