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Abstract— Differentially methylated regions (DMRs) are seg-
ments or islands of consecutive sequence positions, showing
methylation enrichment or depletion compared to each other
in different samples or tissues. The identification of DMRs is
a crucial first step in the discovery of biomarkers for non-
invasive prenatal diagnosis of aneuploidies such as Trisomy
21. In this paper we describe an algorithm to automatically
identify the manifestation of DMRs on arrays. Our approach,
methylation status mask AND (MS-AND), influenced by the
SHIFT-AND methodology, uses bit operations and masking and
can be applied to any microarray dataset in General Feature
Format (GFF). We show the effectiveness and utilization of our
algorithm using data from Methylated DNA Immunoprecipita-
tion arrays for the identification of DMRs in chromosomes 13,
18 and 21. The algorithm runs on Linux and on Windows
systems and an implementation is available at sourceforge
(http://sourceforge.net/projects/ms-and).

I. INTRODUCTION

The completion of the whole human genome project
coupled with the introduction of high throughput microarray
and sequencing technologies has provided scientists with
powerful means to study and analyse DNA. The human
epigenomehowever, still uncharted, provides a larger amount
of information than merely the sequence of a gene. There is
thus strong interest for its analysis and study.Epigenetics
is the study of heritable traits other than those carried by
DNA sequences and entails DNA methylation and chromatin
modifications.

DNA methylation is a chemical modification of DNA
that occurs when methyl groups are added to its bases.
Methylation most often includes the cytosine of CG pairs
in DNA, usually in both strands [9]:

5′ −m CpG− 3′

3′ −GpCm − 5′

wherem denotes the methylated cytosine.
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DNA methylation occurs at CpG dinucleotides and is
one of the most extensively studied epigenetic modifica-
tions [18]. It is found throughout the genome except in short
unmethylated regions called CpG islands (CGIs) [22], which
are usually (but not always) unmethylated. CGIs are DNA
sequences approximately 1000 bp long within which the
dinucleotide CG is present in a frequency of around 65%
of the sequence base composition.

In a eukaryotic species approximately5% of the cytosine
residues are methylated but the extent of methylation can
be tissue specific and can vary from2% to 7% [9]. This
epigenetic modification regulates gene expression, silences
the activity of genes and transposable elements and stabilizes
gene dosage in X-inactivation and genomic imprinting [3].
DNA methylation information is multiplex with hundreds of
potential methylated cytosines in a gene. It is also quan-
titative because tissues can maintain partial methylationat
a locus which means that the extent to which a site is
methylated can vary [3]. Methylated regions are present
in imprinted genes, which are essential for growth and
development. Imprinted genes carry parental allele specific
methylation profiles and are characterised by differentially
methylated regulatory regions (DMRs) [14].

A. DNA methylation analysis and discovery of differentially
methylated regions

The detection of DNA methylation is based on the abil-
ity to distinguish cytosine from its methylated version of
5-methylcytosine (m5C) [3]. Investigation of methylation
differences between samples, leads to the identification of
differentially methylated regions (DMRs).

A number of different techniques are used for identifying
DMRs. The preprocessing can be performed by:
• Digestion of DNA by a methylation sensitive restriction

endonuclease.
• Bisulfite conversion: sodium bisulfite converts unmethy-

lated cytosine to uracil, whereas methylated cytosines
are protected from conversion.

• Methylated DNA immunoprecipitation (MeDIP): using
an antibody, DNA containing methylated cytosines is
immunoprecipitated and selected.

The use of methylation sensitive restriction enzymes, re-
quires the presence of restriction sites in the target sequences,
therefore there is a limitation on the number of regions that
can be tested. On the other hand, the accurate analysis of the
methylation status after bisulfite conversion, depends on the
conversion of all unmethylated cytosines to uracils, which
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rarely occurs, as DNA is degraded by extensive bisulfite
treatment [15].

After preprocessing the samples using one of the above
methods, the methylation information is obtained by a cor-
responding technology:
• DNA oligonucleotide arrays, after bisulfite conversion

or MeDIP.
• SNP arrays.
• BeadArray (Illumina), after bisulfite conversion.
• Sequencing (Sanger or Next Generation), after bisulfite

conversion or MeDIP.
These high throughput approaches have been used to

analyse DNA methylation across the genomes ofA.thaliana,
the mouse genome, and parts of the human genome. The
first genome wide, single base resolution map of the human
methylome was presented in [12], where bisulfite sequencing
was used to sequence two human cell lines, embryonic stem
cells and fetal lung fibroblasts. Given the great interest in
this cutting-edge technology of next generation sequencing,
several algorithms based on statistical analysis have been
developed that detect differentially methylated regions after
bisulfite sequencing.

BSmooth[8], first aligns the bisulfite treated reads to
the genome, compiles quality assessment metrics based on
methylation estimates by read position, and applies local
average to detect DMRs taking into account any available
replicates. TheeDMRalgorithm [11], extends an R pipeline
(methylkit) [20], to discover boundaries between the DMRs
from bisulfite sequencing reads using bimodal normal distri-
bution, and then calculating the statistical significance of the
DMRs with the Stouffer-Liptak test.COHCAP [23], takes
targeted bisulfite sequencing data and Illumina methylation
array data, as input, to identify CGIs that show a consistent
pattern of methylation among CpG sites; the authors define
a cutoff value for methylation status and categorise the
regions to methylated and unmethylated depending on this
value; they use a p-value and a false discovery rate to
statistically assess their findings.CpG MPs [21], identifies
CpG methylation patterns in bisulfite sequencing data, by
first normalising the sequencing reads into methylation lev-
els of CpGs, and then identifying differentially methylated
regions using the hotspot extension algorithm coupled with
the Shannon entropy method.

Algorithms for identifying DMRs using microarrays have
also been developed. These are again mostly based on
statistical analysis.BioTile [6], is a Perl application that
identifies DMRs in tiling microarray datasets, by first cal-
culating the slope of a linear model between dependent and
independent variables for each array probe, and subsequently
returning regions of adjacent probes with slope values above
or below zero, for three or more consecutive probes, as
potential DMRs; finally, the distribution of DNA methylation
across each probe in a DMR, is evaluated by a permutation
corrected statistical meta-analysis. The software package
QDMR [24], similarly to CpG MPs, is based on the Shannon
entropy method to identify DMRs and quantify methylation
differences between the regions.

In this work, we focus on the MeDIP-chip approach,
wherein the samples are preprocessed with methylated
DNA immunoprecipitation and the selected regions are co-
hybridized on an oligonucleotide array with control DNA, to
find DMRs. The presented solution intentionally avoids the
complexities of statistical analysis, for the express purpose of
allowing its use by a wide range of practitioners, including
those who are inexperienced in this domain. It is simple to
use and identifies DMRs based on the methylation values
of the array regions, without requiring statistical decisions
or assumptions to be made prior to algorithm use. The pro-
gram has been implemented (http://sourceforge.net/

projects/ms-and) to allow for user-input threshold values,
which return more finely grained results. The execution time
is very low, which permits multiple manual permutations.
However, in the paper, for clarity and simplicity, we present
the solution where the threshold values are predefined to
zero.

B. Differentially methylated regions for non-invasive prena-
tal diagnosis of aneuploidies

Prenatal diagnosis of chromosomal aneuploidies is cur-
rently performed by cytogenetics or DNA analysis of fetal
DNA material. This is obtained by amniocentesis, chorionic
villus sampling or chordocentesis. All these methods are
invasive and have a significant risk of fetal loss (0.5 to
1% for chorionic villus sampling and amniocentesis) [15].
The discovery of free fetal DNA in maternal circulation
during pregnancy [13], has shifted the focus of research
to the discovery of non-invasive prenatal diagnosis (NIPD)
methods. By sampling peripheral blood from the pregnant
woman it is now possible to differentiate fetal from maternal
DNA, and analyse the fetal DNA in the laboratory. One of
the most promising demonstrations of NIPD is based on the
use of DMRs, which show differences in methylation status
between fetal and maternal DNA [17].

One such successful method, for NIPD of aneuploidies,
the MeDIP and real time qPCR method by Papageorgiou et
al. [16], has been used to detect Trisomy 21 from maternal
peripheral blood. This group has previously investigated
DMRs on chromosome 21 as well as on chromosomes 13,
18, X, and Y, by using methylated DNA immunoprecipi-
tation, coupled with high resolution oligonucleotide arrays.
The method is based on identifying regions that are hyper-
methylated in placenta DNA, both in first and third trimester,
and hypomethylated in female whole blood. From these
regions, qPCR primers were designed and the amplicons
serve as markers that differentiate fetal from maternal DNA.

In order to discover these regions the authors in [15]
used the SW-ARRAY algorithm [19], which is a dynamic
programming algorithm to detect copy number variations in
array comparative genome hybridization (array-CGH) DNA
data. The algorithm detects very large regions of copy num-
ber variations. These were taken as starting points for subse-
quent manual selection, by visualizing them with SignalMap
(Nimblegen Software), of the required regions. It is difficult
to manually perform this task considering the complexity



of high throughput array data. There is thus a strong need
for an automated method to solve the problem of finding
regions in all three datasets of hypermethylation status in
first and third trimester placenta DNA, and hypomethylated
status in maternal whole blood, in order to directly use them
as potential markers for NIPD. The algorithm in this paper
addresses this need.

The rest of the paper is organized as follows. In the
next section we provide the preliminaries: a description
of the biological data in Section II-A, and the necessary
definitions for the algorithmic solution in Section II-B. Then,
in Section III we formally define the problem and present
our solution, and in Section IV we present and discuss our
experimental results. Finally, we conclude in Section V and
discuss further works.

II. PRELIMINARIES

A. Description of input data

We applied our method to the chromosome 13, 18, and
21 datasets of first and third trimester placenta DNA array,
and whole blood DNA arrays obtained by Papageorgiou et
al. [15] after MeDIP-chip assays. The high resolution tiling
oligonucleotide arrays, specific for chromosomes 13, 18 and
21, had a median probe span of 225 bp for chromosome 13,
170 bp for 18 and 70 bp for chromosome 21. The input
genomic control DNA and the immunoprecipitated DNA
of each sample were differentially labelled with fluorescent
dyes, (Cy3, Cy5), and were co-hybridized on the arrays [15].
The ratio of the signal intensities in each datasets was
then log2 normalised and the normalisedlog2ratio array
datasets were used for analysis. We used datasets generated
by Papageorgiou et al. [15], to test our method. The total
number of probes for the chromosome 13 arrays was 385178
probes, for chromosome 18, 385482 and for chromosome 21,
385183 probes.

In the datasets, log2ratio values represent methylation
values. Hypermethylated probes are the regions that have a
log2ratio value larger than zero and hypomethylated regions
are the regions that have a log2ratio less than zero. In our
analysis, we require at least three consecutive probes to have
a methylation value larger than a threshold of zero to be
selected as a candidate region for placenta DNA arrays,
whereas for whole blood array data we require that the
corresponding probes have methylation values less than a
threshold of zero.

B. Definitions

A region1 is a sequence of base pairs, starting at location
r and stopping at locationr′. A region’s span is [r..r′]. A
probep is a 3-tuple(α, ω, µ), whereα is the start location,
ω is the stop location, andµ is the methylation status in
the [α..ω] region. A sequence of probesP = p1, . . . , pn is
a sequence of 3-tuples(α1, ω1, µ1), . . . , (αn, ωn, µn). The
length |P| of a sequence of probesP , is the number of
probes in the sequence.

1A region corresponds to the probe span.

A sequence of probesP ′ = p′i1 , . . . , p
′
ik

is said to be asub-
sequenceof P if p′i1 , . . . , p

′
ik

are consecutive inP . Formally,
P ′ = p′i1 , . . . , p

′
ik

= (α′i1 , ω
′
i1
, µ′i1), . . . , (α

′
ik
, ω′ik , µ

′
ik
) is a

subsequence ofP if and only if (ω′i1 < α′i2 )∧ . . .∧(ω′ik−1
<

α′ik) ∧ {∄ p′′i = (α′′i, ω
′′
i, µ
′′
i) ∈ P ∧ /∈ P ′ such that

(α′′i > α′1) ∧ (α′′i < ω′k)}.
P1st (P3rd) is a sequence of probes with log2ratio nor-

malised data from the first (third) trimester placenta DNA
array, andPwb is a sequence of probes with log2ratio
normalised data from the whole blood peripheral DNA array.

A subsequencepi, ..., pi+k of P1st (P3rd) is a region
with span [αi..ωi+k], and is said to be acandidate re-
gion of P1st (P3rd) if it is of length at least three and
the methylation status of each probe in the subsequence
is greater than zero. Formally, subsequencepi, ..., pi+k =
(αi, ωi, µi), ..., (αi+k, ωi+k, µi+k) of P1st (P3rd) is a can-
didate region ofP1st (P3rd) if and only if (k ≥ 3) ∧ (µℓ > 0
∀ ℓ ∈ [i..i+k]). Similarly, a subsequencepi, ..., pi+k of Pwb

is said to be a candidate region ofPwb if it has length of at
least three and the methylation status of each probe in the
subsequence is less than zero.

III. T HE MS-AND ALGORITHM

The inputs to themethylation status-andalgorithm (MS-
AND), and program, are the log2ratio normalised arrays,
from which it is required to identify the DMRs. Using the
definitions of Section II, we formally define our problem:

Problem 1 (DMR Detection): A DMR is defined to be
the region of overlapping candidate regions ofP1st, P3rd,
and Pwb, with a length of at least three. Given the three
sequences of probes,P1st, P3rd, andPwb, find theDMRs.

The solution presented below is influenced by the SHIFT-
AND algorithm of [2], originally called SHIFT-OR, but that
has come to be known as SHIFT-AND [7]. In that algorithm,
the authors use bit masking and operations to quickly and
efficiently identify exact patterns in strings, when the patterns
are relatively small. Many other solutions to generic string
processing problems, and more specific ones, for example
in the areas of music information retrieval [4], and com-
putational molecular biology [1], have also been influenced
by the SHIFT-AND algorithm, and taken advantage of bit
operations and implementation constructs, such as the C++
Standard Template Library’s bitset container, which uses
minimal space and time to perform said operations.

A. Outline

An outline of the algorithm:

PREPROCESSING: ALIGN THE ARRAYS

A prerequisite for the MS-AND method is that the three
input arrays are aligned, that is, the start and stop locations
of the probe regions are the same:(α1sti = α3rdi

= αwbi)
∧ (ω1sti = ω3rdi

= ωwbi) ∀ i ∈ [1..n], where p1sti =
(α1sti , ω1sti , µ1sti) ∈ P1st, p3rdi

= (α3rdi
, ω3rdi

, µ3rdi
)

∈ P3rd, andpwbi = (αwbi , ωwbi , µwbi) ∈ Pwb. Thus, this
is a requirement when gathering the data.

STEP 1: MASK THE ARRAYS



In this stage, we mask the three DNA arrays. Specifically, for
the placenta DNA arrays (P1st andP3rd) we set the bit to a
1 if there are three or more consecutively hypermethylated
probe regions, and to a0 otherwise. Similarly, for the whole
blood DNA arrayPwb we set the bit to a1 if there are three
or more consecutively hypomethylated probe regions, and to
a 0 otherwise.

Formally, we defineMS1st, MS3rd, and MSwb, to be
arrays of bits, of length|P1st| (= |P3rd| = |Pwb|) with
elements set according to equations 1 and 2:

MS1sti(3rdi) =

{

1, if µj > 0, ∀j ∈ [i− 2..i]
0, otherwise

(1)

MSwbi =

{

1, if µi < 0, ∀j ∈ [i − 2..i]
0, otherwise

(2)

whereP1st (P3rd, Pwb) = (α1, ω1, µ1), . . . , (αn, ωn, µn),
for all i ∈ [1..n].

STEP 2: IDENTIFY CANDIDATE DMRS

In this stage we identify regions that are concurrently hyper-
methylated in the two placenta DNA arrays and hypomethy-
lated in the whole blood DNA. The output of this stage
is a bitmask array, cDMR (candidateDMR), which is
constructed by performing an AND (∧) bit operation on the
three MS arrays:

cDMR = MS1st ∧MS3rd ∧MSwb (3)

STEP 3: IDENTIFY DMRS

In the final stage, the DMRs are identified as being regions
within the candidate DMRs array with three or more con-
secutive 1 bits:

DMRi =

{

1, if cDMRj = 1, ∀j ∈ [i− 2..i]
0, otherwise

(4)

The resulting array of bits (DMR) is a map of the
differentially methylated regions of the chromosome: a1 for
elementi of the array signifies that the region[ai−2..wi] is
hypermethylated in 1st and 3rd trimester placenta DNA and
hypomethylated in whole blood DNA.

Pseudo-code is shown in Algorithm 1.

B. Algorithmic complexity analysis

Algorithm 1 runs in linear time, with a low hidden
constant, and thus a fast execution time. Lines 2, 3, and 4
take O(n) time each, wheren is the number of probes
in each of the GFF files. The key to the algorithm’s and
program’s speed is the use of bit masking and operations,
and the C++ STL’s bitset container. For machine word size
w, line 5 takesO(n/w) time. Lines 9 to 13 also run in
linear timeO(n). The hidden constant is of the order of3,
with the addition ofn/w + k1st + k3rd + kwb, wherekx is
the number of occurrences in each of the three input arrays.

Algorithm 1 Methylation status-and (MS-AND)
1: function IDENTIFY DMRS

⊲ Mask the three pre-aligned arrays:
2: MS1st ← MASKARRAY(“1st trimester”)
3: MS3rd ← MASKARRAY(“3rd trimester”)
4: MSwb ← MASKARRAY(“whole blood”)

⊲ Identify candidate DMRs:
5: cDMR←MS1st & MS3rd & MSwb ⊲ Equation 3
6: i← 0
7: n← |cDMR|
8: DMR1..n ← 0..0 ⊲ initialise all bits to0

⊲ Identify DMRs:
9: while i < n do
10: if cDMRj == 1, ∀j ∈ [i− 2..i] then ⊲ Equation 4
11: DMRi ← 1
12: output region[ai−2..wi]

13: incrementi

14: function MASKARRAY(array)
15: i← 0
16: MS1..|array| ← 0..0
17: while not end of filedo
18: (αi, ωi, µi)← (start location, end location, methylation status)
19: if array is “1st trimester” or “3rd trimester” then ⊲ Equation 1
20: if µj > 0, ∀j ∈ [i− 2..i] then ⊲ 3 consecutive hyperm/d probes
21: MSi ← 1
22: storeαi−2 andωi

23: else if array is “whole blood” then ⊲ Equation 2
24: if µi < 0, ∀j ∈ [i− 2..i] then ⊲ 3 consecutive hypom/d probes
25: MSi ← 1
26: storeαi−2 andωi

27: incrementi
28: return MS

We can representk1st + k3rd + kwb = K, which gives us a
runtime ofO(3n + n/w +K). Furthermore, we know that
n/w < n, andkx < n, thusO(K) = O(n), so this gives a
total runtime ofO(n) for MS-AND.

The space complexity is3n∗bit +K ∗ (2∗int + double)),
which is O(n/w +K) This means that if there are∼ n/w
occurrences, the algorithm has a memory consumption of
the order of the number of occurrences i.e., the number of
hypermethylated (hypomethylated) regions.

IV. EXPERIMENTAL RESULTS

In order to use MeDIP as an enrichment method before
non-invasive prenatal diagnosis, the selected markers need to
be hypermethylated in the fetus and hypomethylated in the
maternal whole blood [15].

The program was implemented in C++ and runs on
Linux and Windows environments (https://sourceforge.

net/ms-and). It takes as input the three array data files
in General Feature File (GFF) format and three threshold
values,t1st, t3rd, andtwb.

Therefore in our experiments we identified those regions
where:

• at least three consecutive oligonucleotide probes in each
array have the same methylation status.

• they have a positive methylation status greater than
t1st(t3rd) in the first and third trimester placenta data
(fetal), and a negative methylation status less thantwb

in female whole blood data.

Our algorithm however, can be easily modified to identify
regions where hypomethylation of fetal DNA and hyperme-
thylation of maternal whole blood is required.



Fig. 1. A differentially methylated region of chromosome 13. The top
track shows a DMR region identified by our algorithm. Below it, the track
shows the three (at least) positive probes of1

st trimester; the track below
this shows the positive3rd trimester probes, and the bottom track shows
the negative valued probes of whole blood for the region identified.

We tested our program on MeDIP array data for chro-
mosomes 13, 18 and 21, with threshold values set to zero.
For chromosome 13 we identified 524 regions hyperme-
thylated in fetal DNA and hypomethylated in the female
whole blood dataset. In chromosome 18 we identified 378
regions which were hypermethylated in the first two datasets
and hypomethylated in the third. The largest number of
DMRs were recorded for chromosome 21 where we found
871 regions which were hypermethylated in fetal DNA and
hypomethylated in maternal blood.

The results were viewed and validated with the SignalMap
software (Nimblegen System). Figure 1 presents a single
differentially methylated region of chromosome 13. The top
track shows our results, the chromosome 13 DMRs found
by our algorithm. The second track shows chromosome 13
first trimester placenta array data. The third track is the
third trimester placenta data for chromosome 13 and the
bottom track is the female chromosome 13 whole blood
array data. As we see from the figure, the region identified
by our algorithm has positive hypermethylated values for
the first trimester and third trimester placenta tracks and
negative hypomethylated values for the female whole blood
track. This differential methylation is as required for MeDIP
quantitative assays.

Using the results of our automated procedure one can
directly cross reference these DMRs with the gene regions
of each chromosome as well as the CpG islands of each
chromosome. We downloaded gene data tracks for chro-
mosomes 13, 18, and 21, and the CpG islands (CGIs)
of chromosomes 13, 18, and 21, from the UCSC genome
browser (NCBI build 36), (http://genome.ucsc.edu). Figure 2
shows this investigation for all three chromosomes. Visual
representation of DMRs, gene and CpG island tracks for
chromosomes 13, 18, and 21. In the outer-most circle we
can see the ideogram of each chromosome. In the inner-
most circle, the DMRs reported from our algorithm are
shown in green. Above these tracks, the second circle as we

TABLE I

TESTS ONCHROMOSOME13 WITH VARYING THRESHOLD VALUES

FORt1st , t3rd , AND twb

.

threshold values # identified regions
t1st t3rd twb

0 0 0 524
0.25 0.25 -0.25 2
0.1 0.1 -0.1 92
0.1 0.15 -0.075 80

move away from the centre of the image, we view in blue
the tracks corresponding to the genes of each chromosome.
The next circle of tracks, shows the CpG islands of each
chromosome in purple. The figure shows the high density of
DMRs found in chromosome 21 compared to the other two
chromosomes which is attributed not only to the fact that
we have reported more DMRs on chromosome 21 than the
other chromosomes (13 and 18), but also due to the higher
resolution array used for chromosome 21 and due to the
smaller size of chromosome 21 compared to the other two.
We also observe that many of the chromosome 21 DMRs
seem to fall outside CpG island regions, a majority of which
are unmethylated [5].

Tests were also run where the threshold values were non-
zero. Table I shows the number of identified regions, for a
few test runs for different threshold values, on chromosome
13. Although these results are promising, they need to be
validated by biologists as to their usefulness.

V. CONCLUSION

We have presented an efficient algorithm for identifying
differentially methylated regions, and shown how this is
important as it is the first step in the discovery of biomarkers
for certain NIPD techniques. After providing the biological
setting, we defined our problem and the necessary constructs
to then present the MS-AND algorithm. We then discussed
our solution, its algorithmic complexity, and our experimen-
tal results on real data.

In our future research we will work on ways to more
accurately identify clinically interesting biomarkers, with the
MS-AND algorithm as a basis. The user-defined threshold
values method is being validated by biologists, and if this
indeed proves useful, machine learning statistical techniques
can be used to automatically determine optimal threshold
values during a learning period for specific datasets. Fur-
thermore we plan to compare our implementation against
other algorithm implementations, for accuracy of biomarker
identification and algorithmic efficiency.

Another two approaches being considered by our group,
also require human validation with regards to its usefulness,
before further development. The first one is to sort and
rank the output regions by the difference in methylation sta-
tus between the hypermethylated and hypomethylated data.
With this approach the runtime will depend on the number
of outputs. ForK identified regions, the running time is
O(n+KlogK). The second approach will classify the output



Fig. 2. Visual representation of DMRs, gene and CpG island tracks for
chromosomes 13, 18, and 21. In the outer-most circle we can see the
ideogram of each chromosome. In the inner-most circle, the DMRs reported
from our algorithm are shown in green. Above these tracks, the second circle
as we move away from the centre of the image, we view in blue thetracks
corresponding to the genes of each chromosome. The next circle of tracks,
shows the CpG islands of each chromosome in purple. Image created with
the software circos [10].

regions depending on the difference in methylation status
between the hypermethylated and hypomethylated data, into
a small range of classes. This approach has the advantage of
keeping the runtime of the algorithm linear.
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