

Abstract—	 Recovery software system operations from a state
of extensive damage without human intervention is a
challenging problem as it may need to be based on a different
infrastructure from the one that the system was originally
designed for and deployed on (i.e., computational and
communication devices) and significant reorganization of
system functionalities. In this paper, we introduce a bio-
inspired approach for reconstructing nearly extinct complex
software systems. Our approach is based on encoding a
computational DNA (co-DNA) of a system and computational
analogues of biological processes to enable the transmission of
co-DNA over computational devices and, through it, the
transformation of these devices into system cells that can realise
chunks of the system functionality, and spread further its
reconstruction process.

I. INTRODUCTION
omplex software systems can suffer from massive
failures, due to environmental factors (e.g., massive loss
of computational or communication infrastructures,

dramatically increased conditions of use due to some social
or physical emergency, security attacks) or internal factors
(e.g., faults in key system components). Such factors can
bring software systems to a near extinction state, i.e., a state
where a large number of system components become non-
operational or physically destroyed, including components
with key local or global control responsibilities. In such
circumstances, the survived components of the system may
also have to operate under an increasingly adverse and
continually changing environment (e.g., in cases where
damage has been caused by on-going external disaster).

Recovering system operations from a near extinction state
is a challenging open problem as it may require excessive
system reconstruction using a physical infrastructure (i.e.,
computational and communication devices) that is different
from the one that the system was originally designed for and
operated on. Besides this, the system may also need to
redirect its focus from a normal and fully functional

Manuscript received July 1, 2013.
A. Bibas, is with the 1st Department of Otolaryngology – Head & Neck

Surgery, University of Athens, Greece. (e-mail: thanosbibas@hotmail.com).
G. Spanoudakis is with the City University London, Northampton

Square, London, EC1V 0HB, UK (corresponding author phone:
+442070408413; fax: +442070400244; e-mail: g.e.spanoudakis@
city.ac.uk).

C. Bellos and D. Koutsouris are with the Biomedical Engineering
Laboratory, Institute of Communications and Computer Systems (ICCS)-
National Technical University of Athens (NTUA), Greece. (e-mail:
cbellos@biomed.ntua.gr, e-mail: d.koutsouris@biomed.ntua.gr).

D. I. Fotiadis is with the Unit of Medical Technology and Intelligent
Information Systems, Dept of Materials Science and Engineering,
University of Ioannina, Greece. (e-mail: fotiadis@cc.uoi.gr).

operating mode to a basic survival operation mode. As a
consequence, the software functionality may have to be re-
modularised and re-allocated onto computational and
communication devices with very different characteristics
than the ones that were used originally. A further
complication is that a near extinction state might continue to
deteriorate, in an unpredictable manner, to full extinction
whilst the system itself is trying to recover.

Scenarios of extensive system damage and reconstruction
arise often in crisis management, when significant parts of
the ICT infrastructure and the software systems running on it
(e.g., communication system for emergency responders) may
be lost following some natural or other disaster. In such
cases, reinstating the damaged system might not be possible
through centralized servers and the original communication
infrastructure (e.g., WiFi), and require reconstruction from
any survived system components (e.g., survived devices of
emergency responders) and use of alternative
communication means (e.g., ad-hoc heterogeneous
networks).

Current state of the art techniques on software system
dependability, resilience and recovery address some aspects
of this problem (e.g., forecasting dependability levels [1],
increasing system resilience through redundancy [2], and
development of autonomic self-healing system capabilities
[3,4]). They cannot, however, support system reconstruction
from a near extinction state.

Software system re-construction from a “near extinct”
state is an activity that needs to be undertaken by the
survived components of the near extinct system in an
autonomic manner, i.e., in a self-triggered and self-managing
mode without assuming or depending on any form of human
intervention. Providing a solution to this problem is more
challenging than repairing a system following the detection
of faults. This is because it must deal with the extensive loss
of key system components and services, the computational
infrastructure where the system is deployed, and possibly
key system administration actors and functions. And whilst
autonomic system behaviour is necessary in such
circumstances, it is not sufficient on its own for
reconstructing the system.

Since approaches, which are based solely on software and
systems engineering methods, have failed to support
excessive system reconstruction, to achieve a breakthrough
we need to undertake a different and inter-disciplinary
approach. Biological organisms have effective DNA-driven
reconstruction and recovery mechanisms [5-7]. Inspired by
this observation, our approach is to develop a solution for

Biologically Inspired Near Extinct System Reconstruction
Athanasios Bibas, George Spanoudakis, Christos Bellos, Dimitrios I. Fotiadis, Senior Member, IEEE,

and Dimitrios Koutsouris, Senior Member, IEEE

C

978-1-4799-3163-7/13/$31.00 ©2013 IEEE

extensive system reconstruction based on mechanisms
operating using similar principles and processes.

A key element of our approach is the concept of the
computational DNA of a software system (referred to as “co-
DNA” in the rest of this paper). co-DNA models and
encapsulates the basic functional units of a complex
software system that are required in order to fully
reconstruct it, properties of these units that need to be taken
into account in system reconstruction and re-organization,
and possible ways of re-combining the units into alternative
structures. Inspired by the biological analogue that any
individual cell in a multi-cellular organism has the same
information encoded in its DNA regardless of its committed
differentiated path, the co-DNA is physically present in all
the functional units of the original system enabling them to
function as system cells. Then, as in biological organisms,
the function of each of these system cells will be determined
by the unlocked part of the co-DNA that exists in it.

When a system gets in a near extinction state, its co-DNA
can be transmitted across external computational and
communication devices that are identified by the survived
components of the system, in order to recruit and make them
function as system cells as part of the system reconstruction
process. Co-DNA transmission and activation is performed
by computational processes analogous to biological
processes of transmitting DNA and enabling the functioning
of cells of biological organisms with proven effectiveness
for such organisms. Two types of responses of biological
cells are of particular relevance: tissue repair and tissue
regeneration [8-13]. Tissue repair refers to the physiologic
adaptation of an organ after injury in an effort to re-establish
continuity, and involves recruitment of cell types, different
from the original ones, in an effort to establish tissue
continuity, without resulting in the exact replacement of
lost/damaged tissue. Tissue regeneration refers to the
replacement of lost/damaged tissue with an exact copy, such
that both morphology and functionality are completely
restored. Both these responses are driven and enabled by the
DNAs of the relevant organisms. They are also realised
locally without any form of centralised control. The latter
characteristic of biological repair processes is particularly
relevant in the case of system reconstruction from a near
extinct state, as in such cases both the components that
undertake the key control functions of the original system
and critical communication lines between system
components might have been lost.

As shown in part (a) of Fig. 1, for example, a software
system may involve several devices of different
computational capabilities (e.g., servers, laptops, tablets, and
smart phones). Each of these devices will incorporate the co-
DNA of the system with a certain set of genes in it unlocked,
as required for the realisation of the functional role of the
device in the system. Furthermore, the role of the device
(system cell) can be dynamically activated and transformed
by altering the configuration of the locked and unlocked
genes of the co-DNA of the system that is stored in it

dynamically.
The role of co-DNA is also fundamental in the system

reconstruction process. System cells that have not been
destroyed in a near extinction state can transmit the co-DNA
of the system to any computational and communication
devices that they can identify, as shown in parts (b1) and
(b2) of Fig. 1, respectively. Subsequently, if the co-DNA is
accepted by the destination device, it can unlock some of its
genes in order to make the device assume specific operations
as part of the software system that the co-DNA encodes. The
unlocking of genes in the co-DNA that has arrived on a new
device can also make it transmit itself to other devices, as
shown in part (b3) of Fig. 1.

The genes that will be unlocked in the co-DNA that
arrives on a device are determined by a special regulatory
gene that is always unlocked. This gene encodes the core
bootstrapping operations for unlocking other genes. It also
incorporates primitive capabilities for detecting the
resources and computational capabilities of the device in
order to make unlocking decisions. As in biological
organisms, this process can enable the reconstruction of a
near extinct system through the use of different
computational resources, as shown in part (c) of Fig. 1.

Fig. 1. co-DNA enabled software systems and system reconstruction

II. CO-DNA MODELLING
DNA is a complex molecule that contains the genetic

information for the development and function of almost all
living organisms, organised in genes. Each gene contains the
information required for the production of a protein. Other
DNA segments have structural purposes or are involved in
the regulation of gene expression. Regardless of their
function, however, all cells have the same information in
their DNA and what differentiates their type (e.g., muscle
cell, heart cell) is the specific set of genes that are unlocked
in them (the rest of the genome is present but ‘locked’).

In an analogous manner, the co-DNA of a software
system is a library of computational genes, each encoding a
functional unit of the system with descriptions of different
key characteristics of the unit and the code that implements

it. The co-DNA includes also computational genes that can
realise the process of system reconstruction when this
becomes necessary. The genes of co-DNA can be locked or
unlocked dynamically. Unlocked genes become active
functional system components. Locked genes are inactive
components.

The existence of the co-DNA of a software system on a
computational or communication device can make this
device function as part of the system, i.e., to become a
system cell. This will happen when at least one of the genes
of the co-DNA on the device is unlocked. The exact part of
system functionality that is assumed by a device depends on
the genes of the system co-DNA that are unlocked whilst the
co-DNA is within the device.

The software system units that are encoded in the co-DNA
correspond to system components at some level in the
overall software system architecture. These components may
be atomic or composite. Their characterisation as “units”
from the perspective of co-DNA modeling reflects the view
that, even if they could be decomposed further into more
primitive components, the co-DNA model does not encode
this possibility and these components will have to be
activated and used as composite elements when the gene in
the co-DNA, which corresponds to them, is unlocked on a
computational device. The description of software system
units in co-DNA genes is multi-faceted and includes
specifications of:
1) the initial architectural model of the system and the role

of the particular unit within it
2) alternative patterns of re-assembling the unit with other

units in reconstructing the system (depending on
constraints arising during the reconstruction process, as
shown in parts (a) and (c) of Fig. 1)

3) provided and required interfaces of the unit and the
communication protocols through which it may interact
with other units (whether they are part of the same co-
DNA or other co-DNAs that may be recombined with the
gene dynamically (see process P7 below)

4) quality and security properties that the unit requires and
can guarantee whilst interacting with other units

5) the information that the unit could reveal about its
internal state and the interface through which such
information can be obtained by other system units in
order to enable them identify a wider “system state” that
may be necessary in deciding with which units to
connect and how to alter their behaviour if necessary

6) the code implementing the unit, and
7) possible configurations of the code depending on the

hosting device where the code should run.
The above facets are necessary in order to support

different operations in the system reconstruction process and
realize the functionality of the system.

In addition to genes encoding the functional units of the
system, the co-DNA incorporates genes with a regulatory
role in the system reconstruction process. The latter genes
undertake responsibility for functions such as the initial
unlocking (and the dynamic locking/unlocking) of other co-

DNA genes; transmitting the co-DNA to additional devices;
obtaining and analysing information about the operational
context of the co-DNA on a device and the state of the
system components on the local device where they belong;
and transmitting, receiving and acting on signals regarding
the overall state of the software system in order to undertake
appropriate component adaptation actions on the local
device. A conceptual view of the overall co-DNA structure
is shown in Fig. 2.

Fig. 2. Conceptual co-DNA structure.

III. BIOLOGICALLY INSPIRED SOFTWARE SYSTEM
RECONSTRUCTION PROCESSES

Having described the basic modeling facets of co-DNA,
we can now turn our attention to specific biological
processes that can be simulated to enable system
reconstruction:

Tissue communication and awareness of injury (P1):
In biological systems, following injury and loss of tissue, a
variety of local events will signal the initiation of tissue
response. An increase in the concentration of certain
chemical signals (chemotactic agents) released from injured
cells will signal the recruitment of certain type of cells to the
area of injury that will assist in wound healing. At the same
time, a fall in the extracellular concentration of certain
chemical signals, continuously produced by the cells
themselves, may trigger cell division (mitosis) of the
remaining cell population. With tissue regeneration and the
resultant increase in the number of cells, the concentration of
the chemical signal, will again rise. This would signal the
restoration of the original cell population and cell replication
will stop.

In software system reconstruction, each system cell is
modeled to transmit a tracer signal to neighbouring nodes.
The tracer signal is modeled as a random walk, and hence
each node will receive an average number of ‘visits’ over
time. The fall of this number below an expected threshold
will signify loss of a critical mass of nodes and will trigger a
response from the surviving nodes. The appropriate response
for this scenario is the recruitment of new unassigned nodes
for restoring system functionality. Depending on the
architecture, there could also be local and global constraints
to satisfy. co-DNA encodes such constraints instructing the

Normal	 genes	 encoding
functional	 system	 units

Regulatory	 genes Control
gene

co-‐DNA	 structuring	 meta	 data

Assumed	 &
guaranteed

quality
properties

System	 architecture	 model

Architecture	 alternation	 patterns

Provided	 and	 required	 interfaces	 &	 communication	 protocols

Internal	 state	 exposition	 interface

Code

Configuration	 model

node, which receives them to act in a network building
capacity until local constraints are satisfied and then
continue monitoring this state. Depending on the schemes
for dealing with this issue, there might be simultaneous
competing reaction by different nodes or over-reaction.
Thus, appropriate schemes for self-regulation are also
needed, as part of the co-DNA encoding.

Cell signaling & response (P2): Cell communication is
realised through signals that are sent and received by cells or
come from the environment. Once a signal reaches its target
molecule (usually a protein), it works to change the
behaviour of the cell. Each cell receives a complex
combination of signals, which can simultaneously trigger
many different signaling pathways. Each step in a signaling
pathway provides an opportunity for communication
between different cells. Through this communication, the
cell integrates information from different signaling pathways
to initiate an appropriate response.

Similarly, co-DNAs can be transmitted across different
computational devices through networks using appropriate
protocols. These may be non-standard network overlay
protocols. They could also imitate malware techniques in
order to be used across different platforms. An overlay
network layer protocol should support co-DNA receipt,
dispatch, confirmation, encoding, decoding, and storage
actions. When a device receives a signal containing a co-
DNA transmitted and activates it, the device establishes an
application layer communication with other software cells of
the same system. At that level an additional communication
protocol is required to let the device act in an application
compatible manner. The protocol of this communication
must be determined by the co-DNA itself.

In response to appropriate signals, a cell may survive,
divide (cell replication), differentiate or die in a programmed
way (apoptosis) (Fig. 3). Similarly the surviving system
elements could ‘replicate’ themselves, leading to the
creation of separate virtual machines running on the same
computational device. The benefit of splitting a device into
two or more separate virtual machines is that the resulting
machines could behave in an independent way, assuming
roles of different software system cells. Subsequently, they
may also behave in different ways depending on the
transformations of their individual co-DNAs after the initial
split that led to their creation.

Cellular differentiation is the process by which a less
specialized cell becomes a more specialized cell type.
Differentiation changes a cell's size, shape, metabolic
activity, responsiveness to signals, and ultimately,
functionality. These changes are largely due to highly
controlled modifications in gene expression (epigenetics).
With a few exceptions, cellular differentiation almost never
involves a change in the DNA sequence itself. Thus,
different cells can have very different physical
characteristics despite having the same genome. Closely
related to this process is metaplasia, a type of cellular
adaptation to chronic injury. Metaplasia occurs when a

differentiated cell of a certain type is replaced by another
cell type, which may be less differentiated. Differentiation in
software systems may be modeled by system cells acquiring
new functions through dynamic unlocking of co-DNA
functions triggered by signals that specific system cells get
from their environment (e.g., low battery, memory resource
exhaustion, changes to device configurations).

In contrast to cell death following an external noxious
effect, apoptosis is a programmed cell death process,
designed for the normal elimination of unwanted cell
populations. Regulation of apoptosis is mediated by a
number of genes in DNA and their products. In system
recovery, the recruited software system cells may be also
modeled for programmed shutdown. This may be necessary
when, in the absence of any centralised form of control in
the reconstruction process, the system reaches a state of too
many elements of a given type. This function can be
triggered by “apoptosis” functions encoded in the co -DNA
of a system cell or newly sent external co-DNAs.

Tissue remodeling (P3): Healing is a complex and
dynamic process of restoring cellular structures and tissue
layers. As healing develops over time, the cellular and non-
cellular elements of the healed tissue change configuration
to resemble the original tissue before injury. Similarly, as
original system cells recover, the software system needs to
have the ability to reconfigure itself according to its original
architecture.

Fig. 3. Cell responses to different signals (represented by A-D)

DNA Replication (P4): DNA has the ability to replicate
itself through complex gene regulated mechanisms,
involving special proteins. The co-DNA should have the
ability to replicate itself faultlessly through a novel protocol
leading to the creation of exact copies that can be
transmitted to different computational devices. co-DNAs
should also encode mechanisms for identifying random
faults during their replication and correct them.

DNA Transformation and recombination (P5):
Transformation is the naturally occurring process of gene
transfer, which involves absorption of the genetic material
by a cell through the fusion of a foreign DNA with the
native DNA resulting in the genetic expression of the
received DNA. If DNA material from the cell of an
organism is incorporated into the DNA of a host cell of a
different organism, then a recombinant or chimeric DNA is
constructed. In another form of recombination, known as
transpositional recombination, mobile elements

(transposons) are inserted into a target DNA and can play a
critical role in the spread of several factors. Recombinant
DNA (rDNA) molecules can bring together genetic material
from multiple sources, creating sequences that would not
otherwise be found in biological organisms. rDNA is
possible because DNA molecules from all organisms share
the same chemical structure.

The ability to incorporate the co-DNA of an external
software system, through transfection, to a host device with
a different original function is also important for system
reconstruction (Fig. 4). The transfection of co-DNA may
take different forms, e.g., forced transfection (when near
extinction is reached in critical systems such as emergency
response systems), near shut down transfection and denial of
service. Transformation may need to be regulated to address
security and operational constraints (e.g., to avoid over-
utilisation of the target cell or the transfection of malware).

Fig. 4. Mechanisms of transformation. Exogenous DNA can be integrated to
the host DNA molecule (recombinant DNA) or in special DNA types
(plasmids) it can transform the cell (i.e. expression of plasmid genes)
without integration of the DNA material into the host cell’s chromosome.

Gene expression regulation (P6): The regulation of gene
expression includes a wide range of mechanisms that are
used by cells to increase or decrease the production of
specific gene products (proteins). This increases the
versatility and adaptability of an organism by allowing the
cell to express protein when needed. Gene expression
regulation is a multi-level process that generally requires
suppressors and trigger factors. In our approach, near-
extinction events can be modeled to trigger or suppress code
execution. Moreover, upon reaching a certain level of
complexity, a different process permitting the individual to
integrate the vast quantity of interactions with the outside
world may also emerge. This process (aka epigenesist) is
characterized by the possession of a basic structure that is
entirely defined by the genome (the innate part) but can also
be subjected to modification through lifetime interactions of
the individual with the environment (the acquired part).

As shown in Fig. 5, the DNA consists of: (i) dominant
genes alleles offering the different ways of developing each
cell and generating a phenotype, (ii) functional genes alleles
offering the different ways of each organ function, and (iii)
control genes alleles that constitute all the control processes

and the control processes themselves. All genes will be
silent (not active) except defining and controlling genes.
This structure inspires our envisaged conceptual structure of
co-DNA discussed in Sect. II.

Fig. 5. Gene regulation

IV. RELATED WORK
The development of biologically inspired solutions to

computational problems has become a significant trend
within the last couple of decades. Swarm Intelligence [14]
and Social Insect principles [15] have been used to address
problems of distributed search, optimization and routing in
wireless sensor networks [16]. Firefly Synchronization [17]
has been used to address robust and distributed clock
synchronization [18]. Artificial immune [19] and activator-
inhibitor systems have inspired solutions to distributed
coordination, network autonomicity and adaptability, and
system misbehaviour/anomaly detection [20]. Also problems
of content distribution, overlay network formulation, and
coordination in massively distributed systems have been
solved based on the bio-inspired principles of epidemic
spreading [21] and cellular signaling (networks) [22]. In
addition, DNA has been used to build basic computational
units (e.g., logic gates), and DNA like structures have been
used as a model of parallel computation in transactional
systems [23]. Inspired by natural ecosystems, SAPERE has
developed a framework for decentralized deployment and
execution of self-aware and adaptive services for future
pervasive network scenarios [24]. Related research includes
also genetic algorithms [25], and genetic programming (GP)
[26]. Genetic algorithms focus on evolving a population of
candidate solutions to an optimization problem, towards a
better solution. GP is used in genomics focusing on typical
genetic analysis and gene network inference.

Inspired by the autonomy of the human nervous system,
autonomic computing (AC [27,28]) is also concerned with
the development of self-managing capabilities (e.g., self-
configuration, self-optimization, self-protection, self-healing
and self-protection) for software systems. AC typically
advocates a reference control model of monitoring, analysis,
planning, execution and knowledge management capabilities
(MAPE-K [29]) that can be introduced to a normal system to
give it autonomic capabilities. MAPE-K has been realized in
some frameworks (e.g., ABLE [30], KX [31], AC Toolkit
[32]). AC research has also generated autonomic system
specification and adaptation policy languages (e.g., ASSL
[33,34]), and alternative implementations for MAPE-K

capabilities (e.g., monitoring and context awareness [35],
planning [36], knowledge [37] and process adaptation [38]).

The commonality of our co-DNA based system
reconstruction approach with the above strands of research is
that it also aims to draw upon biological mechanisms with
proven properties in order to develop a novel solution to a
challenging computational problem that requires forms of
autonomic behaviour. However, our focus and the
challenges that our approach aims to address are entirely
different from the above work, as we are targeting to address
the re-construction of large-scale software systems starting
from a state of excessive damage, operating with no
capabilities of central control within a continually changing
and possibly increasingly adverse environment (e.g., on-
going disaster/emergency).

V. CONCLUSION
In this paper, we have introduced a bio-inspired approach

for reconstructing nearly extinct complex software systems.
This approach is based on encoding the co-DNA of a system
and computational analogues of biological processes
enabling its transmission over computational devices and,
through it, the transformation of the latter into system cells
that can realise chunks of the system functionality, and
spread further its reconstruction process.

Having outlined the fundamental structure of co-DNA and
the key biological processes that are plausible to utilize in
the system reconstruction process, we are currently
developing the computational framework that will realize
our approach. This development is informed by two case
studies. The first case study is a complex Crisis
Management Software Ecosystem (CMSE) that reaches a
near extinction state following a massive scale failure caused
by a natural disaster. The second case study is a
telecommunication network, involving different layers,
including radio access, the core network and/or the
backhaul/backbone network.

VI. REFERENCES
[1] F. Salfner, M. Lenk, & M. Malek, “A survey of online failure prediction
methods”, ACM Comp. Surveys, 42(3), 2010.
[2] B. Littlewood, L. Strigini, “Redundancy and diversity in security”.
Computer Security–ESORICS 2004. Springer, 2004. 423-438
[3] H. Huebscher, J. McCann, ‘A survey of autonomic computing –
degrees, models and applications”, ACM Computing Surveys, 40(3), 2008.
[4] H. Psaier, H. Dustdar, “A survey on self-healing systems: approaches
and systems”, Computing 91(1), 2011.
[5] A. R. Joyce, B. Palsson, “The model organism as a system: integrating
‘omics’ data sets”, Nature Publishing Group, March 2006 | Volume 7.
[6] Y. Derbal, “on modeling of living organisms using hierarchical coarse-
graining abstractions of knowledge”, J. Biol. Syst., 21, 1350008 (2013).
[7] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K.
Roberts, P. Walter, Essential Cell Biology, March 27, 2009
[8] S.V.Perryman, K.G. Sylvester, “Repair and regeneration: opportunities
for carcinogenesis from tissue stem cells”, J Cell Mol Med, 2006 Apr-
Jun;10(2):292-308.
[9] K.P. Krafts, “Tissue repair: The hidden drama”, Organogenesis. 2010
Oct-Dec; 6(4):225-33.
[10] T.S. Stappenbeck, H. Miyoshi, “The role of stromal stem cells in tissue
regeneration and wound repair”. Science. 2009 Jun 26;324(5935):1666-9.

[11] E. Tanaka, B. Galliot, “Triggering the regeneration and tissue repair
programs”. Development, 136(3):349-53, 2009
[12] A.C. Heinrich, S.A. Patel, B.Y. Reddy, R. Milton, P. Rameshwar,
“Multi- and inter-disciplinary science in personalized delivery of stem cells
for tissue repair”, Curr Stem Cell Res Ther. 2009 Jan;4(1):16-22.
[13] B. Galliot, E. Tanaka, A. Simon, “Regeneration and tissue repair:
themes and variations”, Cell Mol Life Sci. 2008 Jan;65(1):3-7.
[14] M. Farooq, G.A. Di Caro, “Routing protocols for next-generation
networks inspired by collective behaviors of insect societies: An overview”,
Swarm Intelligence, Natural Computing, Springer, 2008, pp. 101–160.
[15] G. Theraulaz, E. Bonbeau, “A brief history of stigmergy”, Artificial
Life 5 (2) (1999) 97–116.
[16] H.F. Wedde, M. Farooq, Y. Zhang, “Beehive: an efficient fault-tolerant
routing algorithm inspired by honey bee behavior”, Ant Colony,
Optimization, and Swarm Intelligence, LNCS, vol. 3172, Springer, 2004, pp.
83–94.
[17] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, “Firefly
inspired sensor network synchronicity with realistic radio effects”, in Proc.
SenSys, 2005, pp. 142–153.
[18] D. Lucarelli, I.-J. Wang, “Decentralized synchronization protocols with
nearest neighbor communication”, in Proc. 2nd International Conference
on embedded Networked Sensor Systems, ACM, 2004, pp. 62–68.
doi:10.1145/1031495.1031503.
[19] S. Sarafijanovic, J.-Y. Le Boudec, “Artificial immune system for
collaborative spam filtering”, in Proc. NISCO 2007, 2008, pp. 39–51.
[20] S. Sarafijanovic´, J.-Y. Le Boudec, “An artificial immune system for
misbehavior detection in mobile ad-hoc networks with virtual thymus,
clustering, danger signal, and memory detectors”, Artif. Immune Syst.
(2004) 342–356.
[21] J.W. Mickens, B.D. Noble, “Modeling epidemic spreading in mobile
environments”, in Proc. 4th ACM Workshop on Wireless Security, 2005, pp.
77–86.
[22] F. Dressler, I. Dietrich, R. German, B. Krüger, “Efficient operation in
sensor and actor networks inspired by cellular signaling cascades”, in Proc.
Autonomics, 2007, pp. 1–10.
[23] M. Meisel, V. Pappas, L. Zhang, “A taxonomy of biologically inspired
research in computer networking”, Computer Networks 54(6): 901-916
(2010).
[24] Project Website: http://www.sapere-project.eu/
[25] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, “Genetic
Programming - An Introduction”, Morgan Kaufmann and
Heidelberg:dpunkt, San Francisco, CA, 1998.
[26] M.W.Khan, M. Alam, “A survey of application: Genomics and genetic
programming, a new frontier”, Genomics 100 (2012) 65–71.
[27] H. Huebscher and J. McCann, “A survey of autonomic computing –
degrees, models and applications”, ACM Computing Surveys, 40(3), 2008.
[28] H. Psaier, and H. Dustdar. “A survey on self-healing systems:
approaches and systems”, Computing 91(1), 2011.
[29] Computing, Autonomic. “An architectural blueprint for autonomic
computing,” in IBM White Paper 2006
[30] J. P. Bigus, D.A. Schlosnagle, J.R. Pilgrim, W. N. Mills, Y. Diao,
“ABLE: A toolkit for building multiagent autonomic systems”. IBM
Systems Journal, 41(3), 350-371, 2002.
[31] G. Kaiser, J. Parekh, P. Gross, G. Valetto, “Kinesthetics extreme: An
external infrastructure for monitoring distributed legacy systems”, in Proc.
Autonomic Computing Workshop, 22-30, 2003.
[32] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F. Yassin, “A practical
guide to the IBM autonomic computing toolkit”, IBM Redbooks, 2004.
[33] E. Vassev, M. Hinchey, “ASSL: A Software Engineering Approach to
Autonomic Computing”, IEEE Computer, 42(6):106-109, June 2009.
[34] Broto, Laurent, et al. “Autonomic management policy specification in
Tune”, in Proc. 2008 ACM Symp. on Applied computing. 2008.
[35] S. Agarwala, et al. “QMON: QoS-and utility-aware monitoring in
enterprise systems”, IEEE International Conference on Autonomic
Computing, 2006. ICAC'06.
[36] A. Ranganathan, R. Campbell, “Autonomic pervasive computing based
on planning”, in Proc. International Conference on Autonomic Computing,
IEEE, 2004.
[37] G. Tesauro, “Reinforcement learning in autonomic computing: A
manifesto and case studies”, Internet Computing, IEEE 11.1 (2007): 22-30.
[38] Lee, Kevin, et al. “Workflow adaptation as an autonomic computing
problem”, in Proc. 2nd workshop on Workflows in support of large-scale
science. ACM, 2007.

