
 
 

 

  

Abstract—	  Recovery software system operations from a state 
of extensive damage without human intervention is a 
challenging problem as it may need to be based on a different 
infrastructure from the one that the system was originally 
designed for and deployed on (i.e., computational and 
communication devices) and significant reorganization of 
system functionalities. In this paper, we introduce a bio-
inspired approach for reconstructing nearly extinct complex 
software systems. Our approach is based on encoding a 
computational DNA (co-DNA) of a system and computational 
analogues of biological processes to enable the transmission of 
co-DNA over computational devices and, through it, the 
transformation of these devices into system cells that can realise 
chunks of the system functionality, and spread further its 
reconstruction process. 

I. INTRODUCTION 
omplex software systems can suffer from massive 
failures, due to environmental factors (e.g., massive loss 
of computational or communication infrastructures, 

dramatically increased conditions of use due to some social 
or physical emergency, security attacks) or internal factors 
(e.g., faults in key system components). Such factors can 
bring software systems to a near extinction state, i.e., a state 
where a large number of system components become non-
operational or physically destroyed, including components 
with key local or global control responsibilities. In such 
circumstances, the survived components of the system may 
also have to operate under an increasingly adverse and 
continually changing environment (e.g., in cases where 
damage has been caused by on-going external disaster). 

Recovering system operations from a near extinction state 
is a challenging open problem as it may require excessive 
system reconstruction using a physical infrastructure (i.e., 
computational and communication devices) that is different 
from the one that the system was originally designed for and 
operated on. Besides this, the system may also need to 
redirect its focus from a normal and fully functional 
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operating mode to a basic survival operation mode. As a 
consequence, the software functionality may have to be re-
modularised and re-allocated onto computational and 
communication devices with very different characteristics 
than the ones that were used originally. A further 
complication is that a near extinction state might continue to 
deteriorate, in an unpredictable manner, to full extinction 
whilst the system itself is trying to recover. 

Scenarios of extensive system damage and reconstruction 
arise often in crisis management, when significant parts of 
the ICT infrastructure and the software systems running on it 
(e.g., communication system for emergency responders) may 
be lost following some natural or other disaster. In such 
cases, reinstating the damaged system might not be possible 
through centralized servers and the original communication 
infrastructure (e.g., WiFi), and require reconstruction from 
any survived system components (e.g., survived devices of 
emergency responders) and use of alternative 
communication means (e.g., ad-hoc heterogeneous 
networks). 

Current state of the art techniques on software system 
dependability, resilience and recovery address some aspects 
of this problem (e.g., forecasting dependability levels [1], 
increasing system resilience through redundancy [2], and 
development of autonomic self-healing system capabilities 
[3,4]). They cannot, however, support system reconstruction 
from a near extinction state. 

Software system re-construction from a “near extinct” 
state is an activity that needs to be undertaken by the 
survived components of the near extinct system in an 
autonomic manner, i.e., in a self-triggered and self-managing 
mode without assuming or depending on any form of human 
intervention. Providing a solution to this problem is more 
challenging than repairing a system following the detection 
of faults. This is because it must deal with the extensive loss 
of key system components and services, the computational 
infrastructure where the system is deployed, and possibly 
key system administration actors and functions. And whilst 
autonomic system behaviour is necessary in such 
circumstances, it is not sufficient on its own for 
reconstructing the system.  

Since approaches, which are based solely on software and 
systems engineering methods, have failed to support 
excessive system reconstruction, to achieve a breakthrough 
we need to undertake a different and inter-disciplinary 
approach. Biological organisms have effective DNA-driven 
reconstruction and recovery mechanisms [5-7]. Inspired by 
this observation, our approach is to develop a solution for 
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extensive system reconstruction based on mechanisms 
operating using similar principles and processes. 

A key element of our approach is the concept of the 
computational DNA of a software system (referred to as “co-
DNA” in the rest of this paper). co-DNA models and 
encapsulates the basic functional units of a complex 
software system that are required in order to fully 
reconstruct it, properties of these units that need to be taken 
into account in system reconstruction and re-organization, 
and possible ways of re-combining the units into alternative 
structures. Inspired by the biological analogue that any 
individual cell in a multi-cellular organism has the same 
information encoded in its DNA regardless of its committed 
differentiated path, the co-DNA is physically present in all 
the functional units of the original system enabling them to 
function as system cells. Then, as in biological organisms, 
the function of each of these system cells will be determined 
by the unlocked part of the co-DNA that exists in it. 

When a system gets in a near extinction state, its co-DNA 
can be transmitted across external computational and 
communication devices that are identified by the survived 
components of the system, in order to recruit and make them 
function as system cells as part of the system reconstruction 
process. Co-DNA transmission and activation is performed 
by computational processes analogous to biological 
processes of transmitting DNA and enabling the functioning 
of cells of biological organisms with proven effectiveness 
for such organisms. Two types of responses of biological 
cells are of particular relevance: tissue repair and tissue 
regeneration [8-13]. Tissue repair refers to the physiologic 
adaptation of an organ after injury in an effort to re-establish 
continuity, and involves recruitment of cell types, different 
from the original ones, in an effort to establish tissue 
continuity, without resulting in the exact replacement of 
lost/damaged tissue. Tissue regeneration refers to the 
replacement of lost/damaged tissue with an exact copy, such 
that both morphology and functionality are completely 
restored. Both these responses are driven and enabled by the 
DNAs of the relevant organisms. They are also realised 
locally without any form of centralised control. The latter 
characteristic of biological repair processes is particularly 
relevant in the case of system reconstruction from a near 
extinct state, as in such cases both the components that 
undertake the key control functions of the original system 
and critical communication lines between system 
components might have been lost.  

As shown in part (a) of Fig. 1, for example, a software 
system may involve several devices of different 
computational capabilities (e.g., servers, laptops, tablets, and 
smart phones). Each of these devices will incorporate the co-
DNA of the system with a certain set of genes in it unlocked, 
as required for the realisation of the functional role of the 
device in the system. Furthermore, the role of the device 
(system cell) can be dynamically activated and transformed 
by altering the configuration of the locked and unlocked 
genes of the co-DNA of the system that is stored in it 

dynamically.  
The role of co-DNA is also fundamental in the system 

reconstruction process. System cells that have not been 
destroyed in a near extinction state can transmit the co-DNA 
of the system to any computational and communication 
devices that they can identify, as shown in parts (b1) and 
(b2) of Fig. 1, respectively. Subsequently, if the co-DNA is 
accepted by the destination device, it can unlock some of its 
genes in order to make the device assume specific operations 
as part of the software system that the co-DNA encodes. The 
unlocking of genes in the co-DNA that has arrived on a new 
device can also make it transmit itself to other devices, as 
shown in part (b3) of Fig. 1. 

The genes that will be unlocked in the co-DNA that 
arrives on a device are determined by a special regulatory 
gene that is always unlocked. This gene encodes the core 
bootstrapping operations for unlocking other genes. It also 
incorporates primitive capabilities for detecting the 
resources and computational capabilities of the device in 
order to make unlocking decisions.  As in biological 
organisms, this process can enable the reconstruction of a 
near extinct system through the use of different 
computational resources, as shown in part (c) of Fig. 1. 

 
Fig. 1. co-DNA enabled software systems and system reconstruction 

II. CO-DNA MODELLING 
DNA is a complex molecule that contains the genetic 

information for the development and function of almost all 
living organisms, organised in genes. Each gene contains the 
information required for the production of a protein. Other 
DNA segments have structural purposes or are involved in 
the regulation of gene expression. Regardless of their 
function, however, all cells have the same information in 
their DNA and what differentiates their type (e.g., muscle 
cell, heart cell) is the specific set of genes that are unlocked 
in them (the rest of the genome is present but ‘locked’).  

In an analogous manner, the co-DNA of a software 
system is a library of computational genes, each encoding a 
functional unit of the system with descriptions of different 
key characteristics of the unit and the code that implements 



 
 

 

it. The co-DNA includes also computational genes that can 
realise the process of system reconstruction when this 
becomes necessary. The genes of co-DNA can be locked or 
unlocked dynamically. Unlocked genes become active 
functional system components. Locked genes are inactive 
components.  

The existence of the co-DNA of a software system on a 
computational or communication device can make this 
device function as part of the system, i.e., to become a 
system cell. This will happen when at least one of the genes 
of the co-DNA on the device is unlocked. The exact part of 
system functionality that is assumed by a device depends on 
the genes of the system co-DNA that are unlocked whilst the 
co-DNA is within the device. 

The software system units that are encoded in the co-DNA 
correspond to system components at some level in the 
overall software system architecture. These components may 
be atomic or composite. Their characterisation as “units” 
from the perspective of co-DNA modeling reflects the view 
that, even if they could be decomposed further into more 
primitive components, the co-DNA model does not encode 
this possibility and these components will have to be 
activated and used as composite elements when the gene in 
the co-DNA, which corresponds to them, is unlocked on a 
computational device. The description of software system 
units in co-DNA genes is multi-faceted and includes 
specifications of: 
1) the initial architectural model of the system and the role 

of the particular unit within it 
2) alternative patterns of re-assembling the unit with other 

units in reconstructing the system (depending on 
constraints arising during the reconstruction process, as 
shown in parts (a) and (c) of Fig. 1)   

3) provided and required interfaces of the unit and the 
communication protocols through which it may interact 
with other units (whether they are part of the same co-
DNA or other co-DNAs that may be recombined with the 
gene dynamically (see process P7 below) 

4) quality and security properties that the unit requires and 
can guarantee whilst interacting with other units 

5) the information that the unit could reveal about its 
internal state and the interface through which such 
information can be obtained by other system units in 
order to enable them identify a wider “system state” that 
may be necessary in deciding with which units to 
connect and how to alter their behaviour if necessary 

6) the code implementing the unit, and 
7) possible configurations of the code depending on the 

hosting device where the code should run. 
The above facets are necessary in order to support 

different operations in the system reconstruction process and 
realize the functionality of the system.  

In addition to genes encoding the functional units of the 
system, the co-DNA incorporates genes with a regulatory 
role in the system reconstruction process. The latter genes 
undertake responsibility for functions such as the initial 
unlocking (and the dynamic locking/unlocking) of other co-

DNA genes; transmitting the co-DNA to additional devices; 
obtaining and analysing information about the operational 
context of the co-DNA on a device and the state of the 
system components on the local device where they belong; 
and transmitting, receiving and acting on signals regarding 
the overall state of the software system in order to undertake 
appropriate component adaptation actions on the local 
device. A conceptual view of the overall co-DNA structure 
is shown in Fig. 2. 
 

 
Fig. 2.  Conceptual co-DNA structure. 

III. BIOLOGICALLY INSPIRED SOFTWARE SYSTEM 
RECONSTRUCTION PROCESSES 

Having described the basic modeling facets of co-DNA, 
we can now turn our attention to specific biological 
processes that can be simulated to enable system 
reconstruction:  

Tissue communication and awareness of injury (P1): 
In biological systems, following injury and loss of tissue, a 
variety of local events will signal the initiation of tissue 
response. An increase in the concentration of certain 
chemical signals (chemotactic agents) released from injured 
cells will signal the recruitment of certain type of cells to the 
area of injury that will assist in wound healing. At the same 
time, a fall in the extracellular concentration of certain 
chemical signals, continuously produced by the cells 
themselves, may trigger cell division (mitosis) of the 
remaining cell population. With tissue regeneration and the 
resultant increase in the number of cells, the concentration of 
the chemical signal, will again rise. This would signal the 
restoration of the original cell population and cell replication 
will stop. 

In software system reconstruction, each system cell is 
modeled to transmit a tracer signal to neighbouring nodes. 
The tracer signal is modeled as a random walk, and hence 
each node will receive an average number of ‘visits’ over 
time. The fall of this number below an expected threshold 
will signify loss of a critical mass of nodes and will trigger a 
response from the surviving nodes. The appropriate response 
for this scenario is the recruitment of new unassigned nodes 
for restoring system functionality. Depending on the 
architecture, there could also be local and global constraints 
to satisfy. co-DNA encodes such constraints instructing the 
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node, which receives them to act in a network building 
capacity until local constraints are satisfied and then 
continue monitoring this state. Depending on the schemes 
for dealing with this issue, there might be simultaneous 
competing reaction by different nodes or over-reaction. 
Thus, appropriate schemes for self-regulation are also 
needed, as part of the co-DNA encoding. 

Cell signaling & response (P2): Cell communication is 
realised through signals that are sent and received by cells or 
come from the environment. Once a signal reaches its target 
molecule (usually a protein), it works to change the 
behaviour of the cell. Each cell receives a complex 
combination of signals, which can simultaneously trigger 
many different signaling pathways. Each step in a signaling 
pathway provides an opportunity for communication 
between different cells. Through this communication, the 
cell integrates information from different signaling pathways 
to initiate an appropriate response.  

Similarly, co-DNAs can be transmitted across different 
computational devices through networks using appropriate 
protocols. These may be non-standard network overlay 
protocols. They could also imitate malware techniques in 
order to be used across different platforms. An overlay 
network layer protocol should support co-DNA receipt, 
dispatch, confirmation, encoding, decoding, and storage 
actions. When a device receives a signal containing a co-
DNA transmitted and activates it, the device establishes an 
application layer communication with other software cells of 
the same system. At that level an additional communication 
protocol is required to let the device act in an application 
compatible manner. The protocol of this communication 
must be determined by the co-DNA itself.  

In response to appropriate signals, a cell may survive, 
divide (cell replication), differentiate or die in a programmed 
way (apoptosis) (Fig. 3). Similarly the surviving system 
elements could ‘replicate’ themselves, leading to the 
creation of separate virtual machines running on the same 
computational device. The benefit of splitting a device into 
two or more separate virtual machines is that the resulting 
machines could behave in an independent way, assuming 
roles of different software system cells. Subsequently, they 
may also behave in different ways depending on the 
transformations of their individual co-DNAs after the initial 
split that led to their creation. 

Cellular differentiation is the process by which a less 
specialized cell becomes a more specialized cell type. 
Differentiation changes a cell's size, shape, metabolic 
activity, responsiveness to signals, and ultimately, 
functionality. These changes are largely due to highly 
controlled modifications in gene expression (epigenetics). 
With a few exceptions, cellular differentiation almost never 
involves a change in the DNA sequence itself. Thus, 
different cells can have very different physical 
characteristics despite having the same genome. Closely 
related to this process is metaplasia, a type of cellular 
adaptation to chronic injury. Metaplasia occurs when a 

differentiated cell of a certain type is replaced by another 
cell type, which may be less differentiated. Differentiation in 
software systems may be modeled by system cells acquiring 
new functions through dynamic unlocking of co-DNA 
functions triggered by signals that specific system cells get 
from their environment (e.g., low battery, memory resource 
exhaustion, changes to device configurations). 

In contrast to cell death following an external noxious 
effect, apoptosis is a programmed cell death process, 
designed for the normal elimination of unwanted cell 
populations. Regulation of apoptosis is mediated by a 
number of genes in DNA and their products. In system 
recovery, the recruited software system cells may be also 
modeled for programmed shutdown. This may be necessary 
when, in the absence of any centralised form of control in 
the reconstruction process, the system reaches a state of too 
many elements of a given type. This function can be 
triggered by “apoptosis” functions encoded in the co -DNA 
of a system cell or newly sent external co-DNAs.  

Tissue remodeling (P3): Healing is a complex and 
dynamic process of restoring cellular structures and tissue 
layers. As healing develops over time, the cellular and non-
cellular elements of the healed tissue change configuration 
to resemble the original tissue before injury. Similarly, as 
original system cells recover, the software system needs to 
have the ability to reconfigure itself according to its original 
architecture. 

 
Fig. 3. Cell responses to different signals (represented by A-D) 

DNA Replication (P4): DNA has the ability to replicate 
itself through complex gene regulated mechanisms, 
involving special proteins. The co-DNA should have the 
ability to replicate itself faultlessly through a novel protocol 
leading to the creation of exact copies that can be 
transmitted to different computational devices. co-DNAs 
should also encode mechanisms for identifying random 
faults during their replication and correct them.  

DNA Transformation and recombination (P5): 
Transformation is the naturally occurring process of gene 
transfer, which involves absorption of the genetic material 
by a cell through the fusion of a foreign DNA with the 
native DNA resulting in the genetic expression of the 
received DNA. If DNA material from the cell of an 
organism is incorporated into the DNA of a host cell of a 
different organism, then a recombinant or chimeric DNA is 
constructed. In another form of recombination, known as 
transpositional recombination, mobile elements 



 
 

 

(transposons) are inserted into a target DNA and can play a 
critical role in the spread of several factors. Recombinant 
DNA (rDNA) molecules can bring together genetic material 
from multiple sources, creating sequences that would not 
otherwise be found in biological organisms. rDNA is 
possible because DNA molecules from all organisms share 
the same chemical structure. 

The ability to incorporate the co-DNA of an external 
software system, through transfection, to a host device with 
a different original function is also important for system 
reconstruction (Fig. 4). The transfection of co-DNA may 
take different forms, e.g., forced transfection (when near 
extinction is reached in critical systems such as emergency 
response systems), near shut down transfection and denial of 
service. Transformation may need to be regulated to address 
security and operational constraints (e.g., to avoid over-
utilisation of the target cell or the transfection of malware). 

 
Fig. 4. Mechanisms of transformation. Exogenous DNA can be integrated to 
the host DNA molecule (recombinant DNA) or in special DNA types  
(plasmids) it can transform the cell (i.e. expression of plasmid genes) 
without integration of the DNA material into the host cell’s chromosome. 

Gene expression regulation (P6): The regulation of gene 
expression includes a wide range of mechanisms that are 
used by cells to increase or decrease the production of 
specific gene products (proteins). This increases the 
versatility and adaptability of an organism by allowing the 
cell to express protein when needed. Gene expression 
regulation is a multi-level process that generally requires 
suppressors and trigger factors. In our approach, near-
extinction events can be modeled to trigger or suppress code 
execution. Moreover, upon reaching a certain level of 
complexity, a different process permitting the individual to 
integrate the vast quantity of interactions with the outside 
world may also emerge. This process (aka epigenesist) is 
characterized by the possession of a basic structure that is 
entirely defined by the genome (the innate part) but can also 
be subjected to modification through lifetime interactions of 
the individual with the environment (the acquired part). 

As shown in Fig. 5, the DNA consists of: (i) dominant 
genes alleles offering the different ways of developing each 
cell and generating a phenotype, (ii) functional genes alleles 
offering the different ways of each organ function, and (iii) 
control genes alleles that constitute all the control processes 

and the control processes themselves.  All genes will be 
silent (not active) except defining and controlling genes. 
This structure inspires our envisaged conceptual structure of 
co-DNA discussed in Sect. II.  

 
Fig. 5. Gene regulation 

IV. RELATED WORK 
The development of biologically inspired solutions to 

computational problems has become a significant trend 
within the last couple of decades. Swarm Intelligence [14] 
and Social Insect principles [15] have been used to address 
problems of distributed search, optimization and routing in 
wireless sensor networks [16]. Firefly Synchronization [17] 
has been used to address robust and distributed clock 
synchronization [18]. Artificial immune [19] and activator-
inhibitor systems have inspired solutions to distributed 
coordination, network autonomicity and adaptability, and 
system misbehaviour/anomaly detection [20]. Also problems 
of content distribution, overlay network formulation, and 
coordination in massively distributed systems have been 
solved based on the bio-inspired principles of epidemic 
spreading [21] and cellular signaling (networks) [22]. In 
addition, DNA has been used to build basic computational 
units (e.g., logic gates), and DNA like structures have been 
used as a model of parallel computation in transactional 
systems [23]. Inspired by natural ecosystems, SAPERE has 
developed a framework for decentralized deployment and 
execution of self-aware and adaptive services for future 
pervasive network scenarios [24]. Related research includes 
also genetic algorithms [25], and genetic programming (GP) 
[26]. Genetic algorithms focus on evolving a population of 
candidate solutions to an optimization problem, towards a 
better solution. GP is used in genomics focusing on typical 
genetic analysis and gene network inference.  

Inspired by the autonomy of the human nervous system, 
autonomic computing (AC [27,28]) is also concerned with 
the development of self-managing capabilities (e.g., self-
configuration, self-optimization, self-protection, self-healing 
and self-protection) for software systems.  AC typically 
advocates a reference control model of monitoring, analysis, 
planning, execution and knowledge management capabilities 
(MAPE-K [29]) that can be introduced to a normal system to 
give it autonomic capabilities. MAPE-K has been realized in 
some frameworks (e.g., ABLE [30], KX [31], AC Toolkit 
[32]). AC research has also generated autonomic system 
specification and adaptation policy languages (e.g., ASSL 
[33,34]), and alternative implementations for MAPE-K 



 
 

 

capabilities (e.g., monitoring and context awareness [35], 
planning [36], knowledge [37] and process adaptation [38]). 

The commonality of our co-DNA based system 
reconstruction approach with the above strands of research is 
that it also aims to draw upon biological mechanisms with 
proven properties in order to develop a novel solution to a 
challenging computational problem that requires forms of 
autonomic behaviour. However, our focus and the 
challenges that our approach aims to address are entirely 
different from the above work, as we are targeting to address 
the re-construction of large-scale software systems starting 
from a state of excessive damage, operating with no 
capabilities of central control within a continually changing 
and possibly increasingly adverse environment (e.g., on-
going disaster/emergency).  

V. CONCLUSION 
In this paper, we have introduced a bio-inspired approach 

for reconstructing nearly extinct complex software systems. 
This approach is based on encoding the co-DNA of a system 
and computational analogues of biological processes 
enabling its transmission over computational devices and, 
through it, the transformation of the latter into system cells 
that can realise chunks of the system functionality, and 
spread further its reconstruction process. 

Having outlined the fundamental structure of co-DNA and 
the key biological processes that are plausible to utilize in 
the system reconstruction process, we are currently 
developing the computational framework that will realize 
our approach. This development is informed by two case 
studies. The first case study is a complex Crisis 
Management Software Ecosystem (CMSE) that reaches a 
near extinction state following a massive scale failure caused 
by a natural disaster.   The second case study is a 
telecommunication network, involving different layers, 
including radio access, the core network and/or the 
backhaul/backbone network. 
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