
Abstract— The aim of this study is to investigate the 
predictive capacity of multiparametric magnetic resonance 
imaging (MRI) findings using multivariate discriminant 
analysis. Preoperative clinical findings and multiparametric
MRI, including diffusion weighted MR imaging, diffusion 
tensor imaging, perfusion MR imaging and MR spectroscopic 
imaging, were used as predictors to distinguish high grade from 
low grade gliomas. Principal component analysis was 
performed prior to discriminant analysis for dimensional
reduction. Linear and quadratic discriminant analysis were
performed and compared based on sensitivity and specificity 
analysis. The sensitivities of linear and quadratic discriminant 
analysis were 76.5% and 83.5%, respectively. Their specificities
were 68.5% and 46.5%, respectively. Quadratic discriminant 
analysis provided a better discrimination than linear 
discriminant analysis for this dataset. This study is a model for 
a computer aided diagnosis system for glioma grading.

I. INTRODUCTION

HE most frequent primary tumor of central nervous 
system is glioma that originates from the glial cells,  

which are the support cells of neurons. Accurate tumor 
classification provides staging information for the modern 
clinical practice of neuro-oncology [1]. The World Health 
Organization (WHO) glioma classification system provides a 
malignancy scale ranging from one to four [2]. Grade I is the 
least advanced disease that is probably cured following 
surgical resection alone. Although grade II has low-level 
proliferative activity, it often shows local recurrence. The 
lesions with histological evidence of malignancy are graded 
as grade III, while cytologically malignant, mitotically 
active, necrosis-prone neoplasms typically associated with 
rapid pre- and postoperative disease evolution and a fatal 
outcome are graded as grade IV [2].

Developing computer aided diagnosis (CAD) systems is 
an interdisciplinary approach that combines data mining, 
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machine learning and image processing techniques to assist 
radiologists for interpreting medical images, including 
computed tomography, X-ray, MRI and ultrasound.

A CAD system design is highly disease dependent that 
needs extensive work on both predictors of the disease and 
classification techniques. Previous studies have developed
CAD systems for grading brain tumors using several 
predictors. A previous study reported 85% sensitivity in 
discrimination of low and high grade gliomas using 
multiparametric MRI (mpMRI) without diffusion weighted 
imaging [3]. Awasthi et al. made discriminant function 
analysis based on dynamic contrast-enhanced (DCE) 
perfusion derived indices and immunohistochemical markers 
to classify low and high grade gliomas, and reported an 
overall sensitivity of %92.1 [4].  Valéry et al. studied 
correlation between  surface of tumor volume (STV) and 
clinical parameters [5]. Yei et al. studied staging of gliomas
using data mining techniques [6].

In this study, a CAD system was designed based on
preoperative mpMRI of brain to grade gliomas. The 
predictive capacity of indices of mpMRI including diffusion 
weighted MR imaging, diffusion tensor imaging, perfusion 
MR imaging and MR spectroscopic imaging sequences were 
assessed. Principal Component Analysis (PCA) method was 
used to uncorrelate data for dimensional reduction. Then, 
Linear Discriminant Analysis (LDA) and Quadratic 
Discriminant Analysis (QDA) statistical methods were used 
to model data to predict the final grade. Performances of the 
models were compared using sensitivity and specificity 
analysis.

II. MATERIAL AND METHODS

A. Subjects
Thirty-one newly-diagnosed brain tumor patients (2 GrI, 9 

GrII, 7 GrIII and 13 GrIV; mean age=48.39±14.32) were 
scanned on a 3T MR scanner (Philips, Netherlands) with an 
eight-channel head coil. All patients underwent routine brain 
tumor protocol including; T2 weighted (T2w) turbo spin 
echo (TSE), T2w fluid attenuated inversion recovery 
(FLAIR), diffusion weighted MR imaging (b=1000), 
diffusion tensor imaging (DTI), pre- and post-contrast 3D 
T1w turbo field echo (TFE), perfusion MR imaging and MR 
spectroscopic imaging sequences. Fractional anisotropy 
(FA), cerebral blood volume (CBV), mean transit time
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(MTT), cerebral blood flow (CBF), apparent diffusion 
coefficient (ADC), and peak heights and ratios of N-acetyl 
aspartate (NAA), creatine (Cr) and choline (Cho) were 
calculated. NAA over Cr (NAA/Cr) and Cho over Cr 
(Cho/Cr) ratios were also computed. For each patient, the
voxel displaying highest choline level or CBV value was 
determined as the first region of interest (ROI) that had 
tumor. A second ROI that was 1 cm away from the tumor 
margin was defined as the border ROI. A third ROI that was 
2 cm away from the tumor margin was defined as the 
surrounding tissue. Finally, a fourth ROI was defined at the 
symmetrical normal region. The volume of each ROI was 1-
2 cm3. Regions of interest were placed on all MR images by 
an experienced Radiologist manually while keeping the 
location and size of the ROI same.

All features were normalized with the corresponding 
normal region features. Glioma grades I and II were grouped 
as low grade, and grades III and IV were grouped as high 
grade. In total, twenty-two features, which were age of 
patient, FA, CBV, MTT, CBF, ADC, Cho/Cr and NAA/Cr 
of first, second and third ROIs normalized with fourth ROI's
values were used as predictors, and their distributions in high 
and low grade gliomas are summarized in Table I.

B. Methods
1) Preprocessing of data: The data was multivariate and 

PCA is a maximum variance projection method, so the data 
was scaled using unit variance scaling method, and then the 
means were centered to zero [7].

2) Principal Component Analysis: Principal Component 
Analysis (PCA) produces a set of uncorrelated variables,
called principal components, from correlated variables [8].
PCA is recommended to be performed prior to any kind of 
multivariate data analysis [8]. Locating possible outliers in 
the data, clustering data into subgroups or verifying results
of clustering programs, providing variance-covariance matrix
to a discriminant analysis, uncorrelating data, and reducing 
dimensionality are some functions of PCA [8].

PCA commonly uses Hotelling's T2 method [9] to 
determine outliers, which is a statistical technique to 
calculate distance of data from the center of the cluster.

3) Linear Discriminant Analysis and Quadratic 
Discriminant Analysis: Discriminant analysis is a 
multivariate technique to predict the group of an observation 
based on a set of predictors [8]. Discriminant analysis is 
similar to regression analysis but differs in output. While 
regression analysis is able to predict the value of a dependent 
variable, discriminant analysis predicts class membership of 
an individual observation [8].

Discriminant analysis provides a function called 
discriminant function to classify data. The dataset is 
projected into the discriminant function by minimizing the 
intra-class distance while maximizing the inter-class 
distance.

Linear discriminant analysis and quadratic discriminant 
analysis are two types of discriminant analysis that differs in 
the resultant discriminant function that is linear or quadratic. 

Figure 1 demonstrates an example of linear discrimination 
of a two-dimensional data that belongs to two classes marked 
with squares and circles. m1b and m1a are the means of the 
first class marked with squares before and after the 
projection, while m2b and m2a are that of the other class 
[10].

TABLE I
PREDICTORS OF GRADE

Predictor Low Grade High Grade

Age 42.82±10.81 51.45±15.32
1st ROI - FA 0.32±0.20 0.36±0.22
2nd ROI - FA 0.76±0.30 0.58±0.19
3rd ROI - FA 0.80±0.39 0.78±0.51
1st ROI - CBV 0.94±0.88 2.46±2.08
2nd ROI - CBV 1.10±0.67 1.42±1.09
3rd ROI - CBV 1.08±0.74 1.45±2.02
1st ROI - CBF 1.05±0.86 2.58±2.34
2nd ROI - CBF 1.09±0.61 1.82±1.85
3rd ROI - CBF 1.09±0.67 1.87±2.16
1st ROI - MTT 0.85±0.58 0.93±0.35
2nd ROI - MTT 1.04±0.17 0.92±0.31
3rd ROI - MTT 0.97±0.36 0.89±0.34
1st ROI - ADC 2.01±0.62 1.44±0.62
2nd ROI - ADC 1.10±0.54 1.37±0.37
3rd ROI - ADC 1.13±0.27 1.36±0.47
1st ROI – Cho/Cr 2.08±0.43 2.90±2.55
2nd ROI – Cho/Cr 1.45±0.49 2.09±1.62
3rd ROI – Cho/Cr 1.17±0.30 1.59±1.19
1st ROI – NAA/Cr 0.55±0.49 0.50±0.72
2nd ROI – NAA/Cr 0.75±0.35 0.99±1.37
3rd ROI – NAA/Cr 0.91±0.37 1.14±1.54

1st ROI, 2nd ROI and 3rd ROI are regions of interests that belongs to 
tumor, border of tumor and surrounding tissue of tumor regions 
normalized with normal tissue values, respectively.

Low grade and high grade values are presented as mean±std.
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Fig. 1.  Two-dimensional data that belongs to one of the two classes 
marked with squares and circles. m1b and m2b represent the mean 
values of classes 1 and 2 before projection, while m1a and m2a are the 
means values of projected data onto a projection vector w. The scatter 
ranges of projections are marked with s1

2 and s2
2.



All the discriminant analysis software was developed in 
MATLAB version R2009b (The MathWorks Inc., Natick, 
MA) using Statistics Toolbox functions. Ten-fold cross-
validation technique was used to separate training and 
validation datasets [11]. One fold was used as the validation 
dataset to test the system, while the other nine folds were
used as the training dataset. This procedure was repeated for 
each of the ten folds. The average of these ten test results 
was determined as the validation result of ten-fold cross 
validation. The random nature of the k-fold cross validation 
technique and our small data size resulted in a large variance 
amongst the results. To overcome this problem, ten-fold 
cross validation process was iterated ten times, and was 
averaged for the final result.

Training dataset was dimensionally reduced using PCA. 
New set of dimensionally reduced data was used to train
LDA and QDA classification methods. Then, LDA and QDA 
classifications were tested by the validation dataset. The 
projection functions of LDA and QDA were calculated. 
Sensitivity and specificity of the LDA and QDA were 
compared for performance analysis of these classification 
methods.

III. RESULTS

A. Principal Component Analysis
Table II shows the eigenvalues calculated by PCA 

analysis. Even with the first and second principal 
components, the system reached a 93.30% cumulative sum. 
In this study, five principal components were selected to 
reach 98%. Remaining predictors were ignored.

Figure 2 shows the second principal component against 
the first principal component of each data point, in which 
high and low grade classes are marked with circles and 
squares. Although 10th data point was marked as an outlier
by Hotelling’s T2 technique, it was near the center of the 
data, and it was not eliminated due to the small size of this
dataset.

Table  III shows the contribution of predictors on both the 
first and second principal components, divided into four 
quadrants. The first group lists the predictors that have 
positive coefficients for both principal components, which 
are  NAA/Cr of all three ROIs, CBV of the tumor and border 
ROIs, MTT of the tumor and surrounding ROIs, ADC of the 
surrounding ROI, CBF of the tumor ROI, and age of the 
patient. 
Cho/Cr of all three ROIs and MTT and ADC of the border 
ROI had negative coefficients for the first principal 
component, while they had positive coefficients for the 
second principal component. 
FA of the surrounding ROI and ADC of the tumor ROI had 
negative coefficients for the first and second principal 
components. The last group lists the predictors that have 
positive coefficients for the first principal component and 
negative coefficients for the second principal component, 
which are  FA of the tumor and border ROI, CBF of the 
border and surrounding ROIs, and CBV of the surrounding 
ROI. It was observed that CBF, CBV, and NAA/Cr from all 
three ROIs had positive coefficients for the first principal 
component, while NAA/Cr, Cho/Cr, and MTT had positive 
coefficients for the second principal component.

The largest coefficient in the first principal component 
belonged to FA of the tumor ROI. The largest coefficient in 
the second principal component belonged to MTT of the 
border ROI.

TABLE II
RESULTS OF PCA ANALYSIS

Predictor Eigenvalue Cumulative Sum (%)

1st Principal 206.4626 0.8816
2nd Principal 12.0528 0.9330
3rd Principal 6.4204 0.9605
4th Principal 3.7241 0.9764
5th Principal 2.7255 0.9880
6th Principal 0.7603 0.9912
7th Principal 0.4393 0.9931
8th Principal 0.3619 0.9947
9th Principal 0.2507 0.9957
10th Principal 0.2131 0.9966
11th Principal 0.1999 0.9975
12th Principal 0.1476 0.9981
13th Principal 0.1325 0.9987
14th Principal 0.1074 0.9991
15th Principal 0.0515 0.9994
16th Principal 0.0390 0.9995
17th Principal 0.0350 0.9997
18th Principal 0.0266 0.9998
19th Principal 0.0226 0.9999
20th Principal 0.0161 1.0000
21th Principal 0.0048 1.0000
22th Principal 0.0039 1.0000

1st ROI, 2nd ROI and 3rd ROI are regions of interests that belongs 
to tumor, border of tumor and surrounding tissue of tumor regions 
normalized with normal tissue values, respectively. 

Low grade and high grade values are presented as mean±std.
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Fig. 2. The second principal component is plotted against the first 
principal component. The high grade and low grade classes are 
marked with circles and squares, respectively. 10th observation that  
lies under twice the standard deviation of the mean based on 
Hotelling’s T2 test was marked.



Table IV lists the mean value of the first five principal 
components after dimension reduction using the PCA 
method. 

B. Linear Discriminant Analysis
An example of the function of projection vectors found by 

LDA analysis is given in Eq. 1,

fLDA(a,b,c,d,e) = -0.6212 - 0.5310a - 0.26b - 1.1554c +
0.2014d + 0.2488e, (1)

where, a is the 1st, b is the 2nd, c is the 3rd, d is the 4th, and e 
is the 5th principal components. 

LDA results of the ten iterations are summarized in Table 
V. The average sensitivity and specificity of LDA were 
76.5% and 65.5%, respectively.

C. Quadratic Discriminant Analysis
An example of the projection functions of QDA is given 

by Eq.5, 

fQDA(a,b,c,d,e) = 1.4894 - 0.8182a - 1.0546b - 0.9473c
+0.2503d + 0.3522e -0.4789a2 -0.6379b2 -0.2361c2 -0.172d2

+0.0947e2, (5)

where, a is the 1st, b is the 2nd, c is the 3rd, d is the 4th, and e 
is the 5th principal components. 

The projection functions of fQDA classified this small 
validation data set slightly better than fLDA for all iterations,
as shown in Table VI. The average sensitivity of QDA was
83.5%.

Additionally, the analysis was repeated without 
preprocessing the data, and dimension reduction with PCA.
It was observed that the sensitivity and specificity of LDA 
were reduced to 39.5% and 57.5%, respectively. Similarly, 
sensitivity and specificity of QDA dropped to 64% and 44%,
respectively. So, the classifiers performed better after PCA.

TABLE III
COEFFICIENTS OF PREDICTORS IN PRINCIPAL COMPONENTS

Predictor 1st Principal 2nd Principal

1st ROI - NAA/Cr 0.3806 0.3468
2nd ROI - CBV 0.3170 0.0947
3rd ROI - MTT 0.2730 0.3062
2nd ROI - NAA/Cr 0.2056 0.2088
3rd ROI - NAA/Cr 0.1989 0.1877
3rd ROI - ADC 0.1921 0.4933
1st ROI - CBV 0.1687 0.0599
1st ROI - MTT 0.1626 0.3772
1st ROI - CBF 0.1471 0.0149
Age 0.0092 0.0058
2nd ROI - MTT -0.3617 1.1297
1st ROI - Cho/Cr -0.0686 0.1874
2nd ROI - ADC -0.0743 0.4234
2nd ROI - Cho/Cr -0.1113 0.3057
3rd ROI - Cho/Cr -0.1714 0.4106
3rd ROI - FA -0.0825 -0.2996
1st ROI - ADC -0.3295 -0.1264
1st ROI - FA 0.9893 -0.8001
2nd ROI - FA 0.2458 -0.8605
2nd ROI - CBF 0.2188 -0.0720
3rd ROI - CBF 0.2105 -0.0009
3rd ROI - CBV 0.1515 -0.0085

The coefficients of predictors over 1st and 2nd principal components
are listed above. 

TABLE IV
PRINCIPAL COMPONENTS OF THE  DATASET AFTER PCA (MEAN±STD)

Principal Component Low Grade High Grade

1st Principal -0.75± 0.91 0.41 ± 2.87
2ndPrincipal -0.67 ± 0.78 0.37 ± 2.14
3rd Principal -0.84 ± 0.93 0.46 ± 1.81
4th Principal 0.27 ± 1.12 -0.15 ± 1.65
5th Principal 0.34 ±1.36 -0.19 ± 1.20

Dataset contained twenty high grade data and eleven low grade 
data.

TABLE V
TEST RESULTS OF LDA

Sensitivity Specificity

1st iteration 80% 65%
2nd iteration 65% 65%
3rd iteration 70% 70%
4th iteration 80% 70%
5th iteration 80% 75%
6th iteration 70% 70%
7th iteration 85% 70%
8th iteration 85% 65%
9th iteration 70% 65%
10th iteration 80% 70%

Average 76.5% 68.5%

Ten-fold cross-validation was repeated ten times and their averaged 
sensitivity and specificity values are shown.

TABLE VI
TEST RESULTS OF QDA

Sensitivity Specificity

1st iteration 85% 40%
2nd iteration 85% 50%
3rd iteration 80% 50%
4th iteration 85% 50%
5th iteration 80% 40%
6th iteration 80% 45%
7th iteration 90% 45%
8th iteration 85% 45%
9th iteration 80% 50%
10th iteration 85% 50%

Average 83.5% 46.5%

Ten-fold cross-validation was repeated ten times and their averaged 
sensitivity and specificity values are shown.



CONCLUSIONS

A computer aided diagnosis system for predicting the 
WHO glioma grade based on mpMRI was evaluated in this
study. Unit variance scaling method and mean centering 
methods were used to normalize the data. PCA was used to 
eliminate redundant predictors. Parametric statistical 
methods of LDA and QDA were applied to predict glioma 
grade in a validation dataset. QDA performed better for this 
limited sample size. Future studies will look into the 
performance of different groups of features for the WHO 
glioma grade prediction in a larger patient cohort, and 
Support Vector Machine (SVM) algorithm will also be tested
for glioma classification.
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