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Abstract— In this work, we address the topological colored
motif search problem in metabolic networks. This problem is
a concern in biology, which seeks to describe the functions
and the evolution of metabolism. Recently, several variations
of this problem have been studied. Here, we present some
hardness results for finding motifs. Furthermore, we describe
the first polynomial algorithm for the case in which the motif
is a colorful tree. We also detail a data structure that allows
finding all of these types of motifs in a metabolic network.

I. INTRODUCTION

In the context of structural analysis of metabolic networks,
the problem of searching occurrences of motifs plays a
central role. In metabolic networks, motifs are associated
with both the basic modules of molecular information and the
functional and structural features. Recently, several papers
have addressed the problem considering some permutation
of the motif inside a specific topology of a network [11],
[16], [1]. In their pioneer study Lacroix et al. [13] describe
the topological colored motif problem and show that it is
an NP-hard problem for the general case. They conjectured
that the problem could be solved in polynomial time when
the motif is a colorful tree, where a motif is colorful if each
vertex has a color and each color appears once in the motif.

In this article, we measure the impact of several constraints
over topological colored motifs, all of them considering that
the motif is colorful. We show the hardness of some motif
search problems. In the first one, if it is given a vertex-
colored graph G, representing a metabolic network, and
a colorful motif M , so we show that searching a simple
subgraph of G isomorphic to M is NP-hard. We show that
the motif search problem is NP-hard if the colorful motif
is M as an induced subgraph, even when M is a tree.
Interestingly, we also demonstrate that if M is a colorful
tree, then finding M as a simple subgraph can be solved
in polynomial time confirming the conjecture of Lacroix et
al. [13].

We also address two enumeration problems related to mo-
tifs: the former one consists of enumerating all occurrences
of a colorful motif M in a vertex-colored graph G and the
other consists of finding the maximum number of disjoint
occurrences of M in G. For the first, we provide a data
structure in polynomial time and, for the second, it can be
showed that it is NP-hard.

This work is organized as follows: in Section II, we
provide some definitions and background; in Section III,
we show some hardness results; in Section IV, we present
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a polynomial algorithm for the case when the motif is a
colorful tree and we describe a data structure that allows
finding all of these kind of motifs in a metabolic network;
and, finally, in Section V, we draw some conclusions.

II. DEFINITIONS AND BACKGROUND

Formally, a metabolic network can be defined as a collec-
tion of objects and the relations among them [12]. Chemical
compounds are small molecules transferred, synthesized or
consumed inside an organism. A metabolic network can be
modeled as a simple graph, called graph compound, where
the vertices correspond to chemical compounds and the
edges correspond to reactions where a compound is substrate
and the other is a product. Network motifs are patterns of
interconnections that occur in different parts of a metabolic
network with high frequency.

A vertex-colored graph is a graph where each vertex
has a color. This kind of graph has several applications in
biological networks (Protein-protein Interaction, Metabolic
and Regulatory networks) [9], [3], [15]. In the context of
motifs, a metabolic network can be represented in a compact
manner by a vertex-colored graph, called reaction graph,
where vertices represent chemical reactions and two vertices
are linked if and only if the reactions share a same chemical
compound [13]. Reaction Motif is a motif in a reaction graph.
Throughout this work, we assume that all colors of vertices
in the reaction graph appear in the motif.

We denote the color of an object u by c(u). If G is a
vertex-colored graph, we denote the set of vertices and the
set of edges in G by V (G) and E(G) respectively. We write
uv to represent edge {u, v} and we say that u and v are
adjacent. The vertex-colored graphs H and G are isomorphic
if there is a bijection θ between the vertex set of H and G
such that uv ∈ E(H) if and only if θ(u)θ(v) ∈ E(G) and
c(u) = c(θ(u)) for each u, v ∈ V (H). We write H ≡ G if
H and G are isomorphic.

If G is a graph, V ′ ⊆ V (G) and E′ ⊆ E(G), we denote
the graph obtained removing all vertices in V ′ and all edges
connecting any vertex in V ′ to another vertex from G by
G−V ′ and we denote the graph obtained removing all edges
in E′ from G by G− E′. A graph H is a simple subgraph
of G or simply a subgraph of G if there are a set V ′ of
vertices and a set E′ of edges such that H = (G−V ′)−E′
and a graph H is an induced subgraph of G by V (G)− V ′
if H = G− V ′. We also denote G− V ′ by G[V (G)− V ′].
We write H ≺ G if H is isomorphic to a subgraph of G.

Let G and M be a vertex-colored graph representing a
reaction graph and a motif respectively. In order to address
problems related to motifs in metabolic networks, a motif can
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be characterized as follows: (1) a Topological Motif is one
represented by a reaction graph in which all its vertices have
the same color; here, depending on the specific problem we
are interested in answering if M ≺ G or if M is an induced
subgraph of G. (2) a Colored Motif is defined as a multiset
of colors. Here, there is an occurrence of a motif M in G
if an injective function f : M → V (G) exists such that
for each u ∈M , f(u) = v implies that u and v share some
color, and the image of f induces a connected subgraph of G.
(3) a Topological Colored Motif is a motif represented by
a reaction graph; determining an occurrence of M in G in
this case takes into account both connectivity and coloring.
Again, like (1), we can be interested in a motif that it is a
simple or an induced subgraph of a metabolic network.

A general version of a motif search problem addresses
the question as to whether the motif M exists in G. All
known variants of search problems concerned with topolog-
ical motifs are NP-complete, even if M is a path, since
it is easy to see a reduction from the Hamiltonian Path
problem, which is NP-complete [8]. The restricted version of
the topological motifs to an induced subgraph is known as
subgraph isomorphism problem, which is also NP-complete
since it can be reduced to a problem of deciding whether
a graph contains a clique larger than a given size, which is
NP-complete [8]. Search problems concerned with colored
motifs showed to be NP-complete if a repetition of colors
occurs [13], even if G is a tree. Most recently, it was
shown [7] that search problem of colored motifs is also NP-
complete even if M consists of |M | distinct colors and each
set of multiset M is an unitary set. Some variations of the
colored motifs problems are APX-hard, even if the graph is
a tree [5]. Some solutions using parameterized algorithms
for searching colored motif have been provided by Dondi et
al [6], and by Betzler et al [2]. Guillemot and Sikora [10]
present an FPT algorithm for counting colored motifs.

III. SOME HARDNESS RESULTS

Considering that the motif is colorful, a decision version
of the Motif Search problem can be formulated as:

Problem 1 (Simple Subgraph): Given a vertex-colored
graph G and a colorful M , M ≺ G?

Theorem 1: Simple Subgraph problem is NP-complete.
Proof: It is easy to see that it is in NP. So, we provide

a reduction from the 3-SAT problem, which is known to be
NP-complete [8]. Given an arbitrary Boolean formula Φ with
m clauses C1, . . . , Cm as an instance of 3-SAT, construct G
with 3m vertices where each vertex represents a literal of a
clause in Φ. Vertices u and v in G have the same color if and
only if u and v come from the same clause in Φ. An edge
uv ∈ E(G) if, and only if, the literals that the vertices u and
v represent are not opposite. Furthermore, M is a colorful
clique with m vertices, whose colors are those in vertices
in G. This transformation can be done in polynomial time.
Next, we argue that the Φ is satisfiable if and only if M ≺ G.

Suppose that Φ is satisfiable. So, there is a true assignment
to the variables that satisfy all clauses. Let S be a set of
vertices corresponding to m literals that belong to a different

clause and that satisfy Φ. By definition of G, it follows that
G[S] ≡M and therefore M ≺ G.

On the other hand, suppose that M ≺ G. So, there is a
subgraph H of G, such that H ≡ M . So, H is a colorful
clique. It follows that the set of vertices in H represents a set
S of m not opposite literals in Φ, one per clause. Therefore,
a true assignment to literals in S satisfies Φ.

Now, consider the following variation of the above prob-
lem: given a vertex-colored graph G and a colorful M , is
there an induced subgraph of G isomorphic to M? Note that
if M ≺ G and M is a colorful clique, there is H that is
also an induced subgraph of G. So, the same reduction and
arguments in the proof of Theorem 1 may be used to show
that it is also an NP-complete problem.

Both biological networks and motifs can be represented
by directed graphs. This is specially relevant when we are
searching motifs in a gene regulatory network. Unfortunately,
that version of search motif problem is not polynomial,
unless P=NP, even whether the input are directed acyclic
graphs (DAGs), since DAG isomorphism is an NP-complete
problem [14]. A related version of the motif search problem
is as follows: given two vertex-colored DAGs G and M such
that each color appears only once in M , is there a subgraph
of G isomorphic to M? Using some adjustments the result
of Theorem 1 can be extended to show that this version of
the problem is also NP-complete.

Another variation of the problem is given below.
Problem 2 (Induced Tree): Given a vertex-colored graph

G and a colorful tree M , is there an induced subgraph of G
isomorphic to M?

Theorem 2: Induced Tree problem is NP-complete.
Proof: It is easy to see that this problem is in NP and, as

well as in Theorem 1, we present a reduction from the 3-SAT
problem. So, given an arbitrary Boolean formula Φ with m
clauses C1, · · ·Cm as an instance of 3-SAT, construct G with
3m + 1 vertices where each of 3m first vertices represents
a literal of a clause in Φ. We call the extra vertex core.
Vertices u and v in G have the same color if and only if
u and v come from the same clause in Φ. The core vertex
has a different color from any other vertex and it is linked
to each one of the 3m remaining vertices. Moreover, two
of the vertices representing literals are linked if and only if
the literals they represent are opposite. Furthermore, M is a
colorful star with m+ 1 vertices, whose colors are those in
V (G) such that the color of its center is the color of the core.
See Figure 1. This transformation can be done in polynomial
time.

Now, we show that the formula Φ is satisfiable if and
only if there is an induced subgraph of G isomorphic to
star M . Suppose that Φ is satisfiable. So, there is a true
assignment to the variables that satisfies all clauses. Let S
be a set of vertices corresponding to m literals that belong
to a different clause and that satisfy Φ. By definition of G,
it follows that G[S ∪ {core}] ≡ M and therefore G[S ∪
{core}] is an induced subgraph of G isomorphic to M .

Now, suppose that there is an induced subgraph H of G
that is isomorphic to M . Because the core color is unique
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Fig. 1. Example of graphs G and M constructed from formula C1∧C2∧
C3∧C4 where C1 = x1∨x2∨x3, C2 = x1∨x3∨x4, C3 = x1∨x4∨x5,
C4 = x2 ∨ x3 ∨ x5.

in G and M , the color of the center of H has the same
color as the vertex core in M and the set of vertices in
V (H)−{core} represents a set S of m not opposite literals
in Φ, one per clause. Therefore, a true assignment to literals
in S satisfies Φ.

An important optimization problem related to motifs
which interests biologists is finding the maximum number
of disjoint occurrences of the motif. Next, we present the
decision version of this problem which can be showed that it
is an NP-complete problem even when the motif is a colorful
tree. The proof is omitted due to lack of space.

Problem 3 (Disjoint Occurrences): (DO(G,M, κ)).
Given a vertex-colored graph G, a colorful tree M and an
integer κ, is there κ disjoint occurrences of M in G?

Theorem 3: Disjoint Occurrences is NP-complete.

IV. ALGORITHMS

We begin by providing some additional definitions that we
shall use in the remaining section. If the set of vertices in
G is empty, we write G = ∅. If v and w are vertices and
v ∈ G but w 6∈ G, we denote the graph G adding vertex w
and edge vw by G+ {vw}. If C is a set of colors, we write
the induced graph of T by vertices whose colors are in C as
T [C].

Problem 4 (TCG): Tree in a colored graph. Given a
vertex-colored graph G and a colorful tree T , determine if
T ≺ G, i.e.

TCG(G,T ) =

{
yes if T ≺ G,
no otherwise.

Algorithm TCG(G,T )

1. if |T | = 0, return yes;
2. if |T | = 1, let v ∈ V (T )
2.1 if ∃w ∈ V (G) : c(w) = c(v), then return yes;
2.2 else return no;
3. if |T | > 1, then
3.1 let v, v′ ∈ V (T ) : v is a leaf and vv′ ∈ E(T );

A = {u ∈ V (G) : c(u) = c(v)};
B = {u ∈ V (G) : c(u) = c(v′) and u does not
have neighbors whose color is c(v)};

3.2 G′ := G− (A ∪ B);
3.3 T ′ := T − {v};
3.4 return TCG(G′, T ′).

Correctness and Complexity

It is clear that this algorithm is correct when |T | ≤ 1.
Then, for |T | > 1, we must show that TCG(G,T ) =
TCG(G′, T ′). The theorem below states this formally.

Theorem 4: Let T and G be a colorful tree with n > 1
vertices and a vertex-colored graph respectively that are
given as an input to TCG. Consider that G′ and T ′ are
vertex-colored graphs computed by the lines 3.2 and 3.3
respectively in TCG. So, T ≺ G if and only if T ′ ≺ G′.

Proof: Let v, v′ ∈ V (T ) such that v is a leaf and
vv′ ∈ E(T ).

First suppose that T ≺ G. Let G be a subgraph of G, such
that G ≡ T . Because T is colorful and G ≡ T , there are
w,w′ ∈ V (G) such that c(w) = c(v) and c(w′) = c(v′) and
w′w ∈ V (G). Note that T ′ = T − {v} ≡ G− {w} = G

′
.

Furthermore, since G
′

= G − {w} is a subgraph of G′, it
follows that T ′ ≺ G′.

Conversely, suppose that T ′ ≺ G′ and T ′ = T −{v}. Let
G
′

be a subgraph of G′, such that G′ ≡ T ′. There is a vertex
w′ in G

′
such that c(w′) = c(v′) and, by the algorithm, it

must be a neighbor to a vertex w in G, with color c(v). So,
G = G

′
+ {w′w} is a subgraph of G. Also, it follows that

T ≡ G. Therefore, T ≺ G.
Now, let nt be the number of vertices of T , and ng,mg

be the number of vertices and edges of G respectively. Since
the vertices and edges in A ∪ B can be removed from G in
O(ng +mg) time, our algorithm spends total time

T (nt) =

{
1 if nt ≤ 1,
T (nt − 1) +O(ng +mg) otherwise.

So, the algorithm spends O(nt(ng +mg)) time.

Maximum clean graphs

In general, we are not only interested in whether there is
a subgraph of G that is isomorphic to T but we also want to
find such a subgraph. We would also like to find several or
even all different subgraphs of G that are isomorphic to T .

The number of subgraphs of G that are isomorphic to the
tree T can be very large compared to the input size, which
makes it prohibitive to find all isomorphic subgraphs of T at
least in the general case. Furthermore, it is useful to have a
simpler structure than G from which it is possible to obtain
all possible subgraphs of G that are isomorphic to T . This
structure is described below.

We say that a graph H is a clean graph from T if each
vertex in H is a vertex of some subgraph of H that is
isomorphic to T and each edge in H is an edge of some
subgraph of H that is isomorphic to T . For a vertex-colored
graph G, we say that H is the maximum clean graph from
T of G if H is a clean graph from T and any subgraph of
G which is isomorphic to T is also a subgraph of H . The
algorithm MCG below finds the maximum clean graph from
T of G.

Correctness and Complexity

In order to prove that H is the maximum clean graph from
T of G, since vertices and edges removed from H by the



Algorithm MCG(G,T )

1. H := G;
2. for each v ∈ V (H)
2.1 if c(v) is not in T , then H := H − {v};
3. for each vv′ ∈ E(H)
3.1 if there is no edge ww′ in T such that

c(v) = c(w) and c(v′) = c(w′), then
H := H − {vv′};

4. while there are v ∈ V (H) and w,w′ ∈ V (T ) such that
c(v) = c(w), ww′ ∈ E(T ) but there is no v′ ∈ V (H)
such that vv′ ∈ E(H) and c(v′) = c(w′), do

4.1 H := H − {v};
5. return H .

algorithm cannot be vertices and edges of subgraphs of G
that are isomorphic to T , it is enough to show that H is a
clean graph from T . We do this through lemmas 1 and 2.
But first, we can easily verify the following auxiliary result.

Fact 1: Let H be a vertex-colored graph obtained by
algorithm MCG which receives tree T as entry, v ∈ V (T )
be a leaf and A = {w ∈ V (H) : c(w) = c(v)}. Then,
MCG(H,T − {v}) = H −A.

Lemma 1: Let H be a vertex-colored graph obtained by
algorithm MCG which has tree T as entry. Then, any
arbitrary vertex x in H is a vertex of some subgraph G
in H that is isomorphic to T .

Proof: Let n be a number of vertices of T . We prove the
lemma by induction of n. Suppose that n ≤ 1. If n = 0, after
step 1, H has no vertex and the proof is done by vacuous
truth. If n = 1, after step 1, the proof is also done because
each vertex in H is isomorphic to T . Assume then n > 1.

If n > 1, then we have that T has two different leaves.
Since T is a colorful tree, it follows that, for one of these
leaves, say v, we have c(x) 6= c(v). Let w be the neighbor
of v in T .

From Fact 1, we have that MCG(H,T − {v}) = H −A
where A = {u : c(u) = c(v)}. Since c(x) 6= c(v), we have
that x ∈ V (H−A). By the induction hypothesis, x is a vertex
of a subgraph G

′ ≡ T − {v} in H−A. Let w′ ∈ G′ such that
c(w′) = c(w). By MCG(G,T ), w′ must have a neighbor v′

whose color is c(v). It follows that G = G
′
+ {w′v′} ≡ T ,

G is a subgraph of H and x ∈ V (G).
Lemma 2: Let H be a vertex-colored graph obtained by

algorithm MCG which has tree T as entry. Then, any
arbitrary edge xy in H is an edge of some subgraph G in
H that is isomorphic to T .

Proof: From Lemma 1 there are subgraphs Gx ≡ T and
Gy ≡ T in H which contain vertices x and y respectively.
It follows that there are vertices y′ and x′ whose colors are
c(y) and c(x) respectively and xy′ is an edge in Gx and x′y
is an edge in Gy . Let G′x the component of Gx−{xy′} that
has vertex x and G′y the component of Gy − {x′y} that has
vertex y. The graph G defined as the components G′x and
G′y adding edge xy is a subgraph of H isomorphic to T .

In order to analyze the time complexity of MCG, we
consider that G and T are represented by adjacency matrices

and the set of colors by an ordered array. Let n be the number
of vertices of the entry of MCG. In this case, Step 1 can
be implemented in O(n2) time because H is a copy of G
and adjacency matrix G has O(n2) entries; the color of each
vertex in H can be checked in O(1) time and be removed in
O(n) time, which implies that Step 2 can be performed by
spending n · (O(1) +O(n)) = O(n2) time; we can verify if
the colors of the vertices of an edge in H are also the colors
of vertices of an edge in T in O(1) time, and, if necessary,
its remotion can also be done in O(1) time which implies,
since we have O(n2) edges, that Step 3 can be performed
by spending O(n2) · (O(1) + O(1)) = O(n2) time; in Step
4, deciding on whether a vertex should be removed or not
can be made spending O(n2) time, and the removal can be
done in O(n) time if this is the case, implying that the total
time spent on Step 4 is n · (O(n2) + O(n)) = O(n3). So,
MCG spends O(n3) time.

Finding a subgraph of H isomorphic to T

In the previous section, we showed how to find the
maximum clean graph H from T of G. A simple greedy
algorithm finds a subgraph G ≡ T from a clean graph H .
All we need to compute G is H , i.e., tree T is implicit in
this algorithm. Here, we assume that H 6= ∅.
Algorithm Greedy(H)

1. V1 = {x1}, where x1 is an arbitrary vertex in H;
2. E1 = ∅;
3. C1 := {c(x1)};
4. for i := 2 to n do

4.1 choose vxi ∈ E(H) such that v ∈ Vi−1, xi 6∈ Vi−1
and c(xi) 6∈ Ci−1; (if there are multiple edges with
the same property, any of them may be picked)

4.2 Vi := Vi−1 ∪ {xi}, Ci := Ci−1 ∪ {c(xi)};
5. return H[Vn].

The total time spent by Greedy depends on how much
time is spent to find an edge vxi in Step 4.1. If H is
represented by an adjacency matrix, and m is the number
of edges in H , then Step 4.2 can be executed in O(m) time.
As Step 4 is executed n− 1 times, Greedy algorithm may
be performed in (n− 1)O(m) = O(nm).

In order to prove that Greedy works correctly, we prove
the following result.

Lemma 3: H[Vn] ≡ T [Cn] ≡ T .
Proof: We show by induction in n. Case n = 1, the

lemma holds because Step 2 of MCG guarantees that the
color of each vertex in H appears in T .

So, assume that H[Vn−1] ≡ T [Cn−1]. Since T is a colorful
tree with n vertices, it follows that there are u,w ∈ V (T )
such that c(u) 6∈ Cn−1, c(w) ∈ Cn−1 and uw ∈ E(T ). Since
c(w) ∈ Cn−1, there is v ∈ Vn−1 such that v is a vertex in H
and c(w) = c(v), and Step 4 of algorithm MCG guarantees
that there is a xn 6∈ Vn−1, such that xn is a vertex in H ,
c(xn) = c(u) and vxn is edge in H . So, H[Vn] ≡ T [Cn].



Finding all subgraphs of H isomorphic to T

As well as in the previous section, the next algorithm
has just the maximum clean graph H as the entry. Tree
T is implicit. If H = ∅, then there is no subgraph of H
isomorphic to T (except if T = ∅ too). So, we assume that
H has at least one vertex.
Algorithm All Isomorphic(H)

1. if |{c(u) : u ∈ V (H)}| = 1, then G := V ;
2. else let α be a color of a vertex of H

whose neighbors have all the same color β;
2.1 A := {u ∈ V (H) : c(u) = α};
2.2 G := ∅;
2.3 H := All Isomorphic(H −A);
2.4 for each vertex v ∈ A do

B := {u ∈ V (H) : c(u) = β and vu ∈ E(H)};
for each G ∈ H such that w ∈ B ∩ V (G) do

G := G ∪ {G+ {vw}}
3. return G
Since H is a clean graph from T , the following fact holds.
Fact 2: Let T be a colorful tree such that |V (T )| = 1.

Then, for each v ∈ V (H), we have v ∈ G, v is a subgraph
of H and v ≡ T .

The following result shows that All Isomorphic(H)
returns the set of all subgraphs of H isomorphic to T .

Theorem 5: Let G be a vertex-colored graph and T be
a colorful tree. Suppose that H := MCG(G,T ), G :=

All Isomorphic(H) and G
′

is a subgraph of H . Then,
G
′ ∈ G if and only if G

′ ≡ T .
Proof: Let n be the number of vertices in T . If n = 1,

then, since H = MCG(G,T ), all vertices in H have the
same color. So, from Step 1 of All Isomorphic, we have
that v ∈ G for each v ∈ V (H). On the other hands, from
Fact 2, v ≡ T for each v ∈ V (H). So, the theorem holds if
n = 1. Then, we assume that n > 1.

Suppose that G
′ ∈ G. By Step 2.4 we have G

′
= G+{vw}

where w ∈ B is a vertex in G ∈ H and v ∈ A. Let u, u′ ∈
V (T ) such that c(u) = c(v) and c(u′) = c(w) and note
that, because H is a clean graph from T , it follows that u
and u′ are neighbors in T . Because H is the maximum clean
graph from T and every neighbor of a vertex of color c(u)
has color c(u′), it follows that u is a leaf in T . It follows
from Fact 1 that H − A is the maximum clean graph for
T −{u}. By the induction hypothesis, it follows that G is a
subgraph of H −A isomorphic to T − {u}. It follows that
G
′

= G+ {vw} is isomorphic to T = T −{u}+ {uu′}. So,
for n > 1, if G

′ ∈ G, then G
′

is isomorphic to T .
Conversely, suppose that G

′
is a subgraph of H isomorphic

to T . Let v and w be vertices in G
′
. By the induction

hypothesis, G := G
′ − {v} ∈ All Isomorphic(H − A).

Then, Step 2.4 of All Isomorphic guarantees that G
′

=
G
′
+ {vw} ∈ G.

V. CONCLUSIONS AND FUTURE WORKS

In this article, we solved an open problem from literature
by describing a polynomial algorithm for finding colorful
tree motifs in a vertex-colored graph. We also gave a data

structure that allows counting or enumerating all motifs
we are interested in a network. We further demonstrated
some hardness results concerning topological colored motifs.
Since the main goal for searching motifs is to help in
the structural analysis of biological networks, it would be
interesting to make an experimental study of these algorithms
in actual biological networks. Previous works[16], [4] have
showed the validation of the model. Some improvement
can be obtained using mixed techniques such as the fixed
parameter approach or approximated algorithms. A variation
of motif search problem has been studied considering an
edge-weighted motif, we would like to address this variation
as a forthcoming work.
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