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Abstract— We propose a new mathematical model for sec-
ondary structure in proteins. Our model is inspired by per-
colation theory on binary strings. What sets us apart from
similar work on the subject is our attempt to deviate from
a data mining approach (which is mostly the trend is science
these days). Therefore, in predicting secondary structures, we
make it our challenge to adhere to sequence information
alone, in a non ad-hoc way, with only minimal information
extracted from databases of known structures. Initial results
show that our model captures some essential aspects of structure
formation, notably a de novo discovery of hydrophobicity from
an optimization perspective. A comparison of our prediction
algorithm to similar methods shows improved performance. In
addition, some evolutionary algorithms using our model exhibit
convergences that are consistent with information obtained
from structural biology.

I. INTRODUCTION

The prediction of protein secondary structure is an impor-
tant and well developed area in Computational Biology. State
of the art methods in this area, e.g. [10] and [13], rely heavily
on large databases of experimentally observed secondary
structures and known proteins’ homologs; and they use this
data with remarkable success! Nevertheless, the problem of
secondary structure prediction is still far from being solved,
and there is a room for new ideas and approaches. In this
work, we make a new attempt to move away from data-driven
methods, and revisit the problem from a solely mathematical
perspective. In doing so, we rely on two premises.

First, sequences of biological origin, e.g. peptide chains
(proteins), are the result of a long evolutionary process.
When treated as strings, these sequences will reveal patterns
(substrings) that are not likely to be seen in randomly
generated strings. Such unusual patterns may just be the right
candidates for significant structures. The claim that all struc-
tures conform to this paradigm is of course an overstatement:
some may still look like a simple random string. But without
an extensive database, they are not identifiable, and one can
only hope to turn to such probabilistic arguments.

Second, interactions among amino acids in a protein
exhibit a certain locality. This locality is especially apparent
in secondary structures where “neighboring” amino acids
form helices and strands. It is this particular feature that
stands behind the 1969 marked speech of Levinthal: “protein
folding is speeded and guided by the rapid formation of
local interactions which then determine the further folding
of the peptide” [1]. Perhaps the periodicity in a secondary
structure will best exemplify this notion of neighborhood.
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For instance, α-helices, with a period of 3.6 residues (amino
acids) per turn, form by making hydrogen bonds to every
4th amino acid. This loosely determines a neighborhood of
4. Other types of helices such as 310-helices, π-helices, and
Polyproline II helices have different periods. Strands have a
period of 2.

TABLE I
SOME PROTEIN SECONDARY STRUCTURES [15], [20].

residues hyd. bond
per turn C=O· · ·HN neighborhood

α-helix 3.6 i→ i+ 4 4
310-helix 3 i→ i+ 3 3
π-helix 4.4 i→ i+ 5 5
Polyproline II helix 3 3
β-strand 2 2

We will explore structures by identifying the unusual
patterns that emerge in binary strings (of ‘1’s and ‘0’s),
through a process of cluster formation similar to the one
found in percolation theory [7]. In our model, ‘1’s that
are separated by at most k − 1 consecutive ‘0’s, for some
integer k (the neighborhood), are considered to belong to
the same cluster. We will show that our model, though
restricted to binary strings, captures some relevant properties
of biological structures when amino acids are binarized.
Moreover, it lends itself to a simple algorithm for predicting
secondary structure. While our algorithm requires almost no
information extracted from structural databases, comparison
to similar works that do, such as the Chou Fassman method
[2] and a recent improvement of it [6], reveals similar or
better performance.

II. WHAT SETS US APART FROM SIMILAR WORK

Both binary strings and percolation theory have been
previously considered as themes in connection to protein
structure, though not together. Some early work consid-
ers protein folding as a combinatorial problem on binary
strings, by mapping hydrophobic amino acids to ‘1’ and
the remaining amino acids to ‘0’, e.g. [16], [17], and [18].
Hydrophobic Cluster Analysis (HCA), e.g. in [9], [12], and
[14], provides a primitive construct for cluster formation
in strings using a similar mapping, but lacks a rigorous
probabilistic framework for distinguishing clusters. A similar
attempt can be found in [11]. The work in [8] explores
percolation theory, but only in the context of extracting a
resemblance of existing protein structures to random graphs
and, therefore, relies heavily on an advance knowledge of
the structure. Our attempt to avoid as much as possible the
use of structural information means that we should adhere
to sequence information alone. To that end, some ad-hoc
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attempts like [3], [4], [5], and [6] have been characterized as
methods that rely on sequence information alone; however,
they all make use of information extracted from patterns of
known structures, e.g. frequency of amino acids in a given
secondary structure. We will intentionally refrain from such
ways, and to be specific, when a database is used, we only
extract a mapping of the amino acids to binary.

III. MODEL

A. Proteins as binary strings

We think of an amino acid sequence as a binary string con-
sisting of two kinds of symbols: Structure forming (‘1’s) and
structure indifferent (‘0’s) (this by no means is a claim that
such amino acids are biologically indifferent to structure).
We will motivate the need for a third kind, structure breakers,
which will be later added to the model. Probabilities of ‘1’s
and ‘0’s are assumed to be known. We model structures as
clusters that form by local interactions of ‘1’s. Informally,
‘1’s that are “neighbors” belong to the same cluster, and we
use k, an integer, to quantify this closeness. Formally, for a
given binary string, consider a hierarchy of clusters formed
by the following merging process:

Definition 1: Every ‘1’ is called a cluster at level k = 0.
Two or more clusters merge and form a bigger cluster at
level k > 0, if they are separated by no more that k − 1
consecutive ‘0’s (See Figure 1).

Fig. 1. Clusters in a binary string for different values of k.

Definition 2: The size of a cluster is the number of ‘1’s
in it.

If the probability of ‘1’s is 0 < p < 1, and the probability
of ‘0’s is q = 1 − p, we can quantify how unusual each
cluster is. We start by defining the following probability.

Definition 3: Let wk,s be the probability that a given ‘1’
falls in a cluster of size s ≥ 1 at level k ≥ 0.
It can be shown that:

wk,s =
{

0s−1 k = 0
(βk,s − βk−1,s) · q2k k > 0

where βk,s = s(pαk)s−1 and αk =
∑k−1
i=0 q

i. Observe that∑∞
s=1 wk,s = 1− q2 for k > 0; there is a probability of q2

that for a given ‘1’ no cluster exists at level k > 0.
The reader may think of this model is an extension of the

one dimensional percolation theory (percolation on a line
when k = 1) [7]. However, while in percolation theory one
is mostly concerned with critical properties of the system,
here we look at the clusters themselves, and their likelihood.

To capture the unusual-ness of a cluster, we define its
weight as its tail probability. Thus, unusual cluster have
smaller weights.

Definition 4: The weight of a cluster of size s at level k
is

W (k, s) =
1
ζk

min
( s∑
t=1

wk,t,

∞∑
t=s

wk,t

)
where ζk =

∑∞
t=1 wk,t which is 1 when k = 0 and 1 − q2

when k > 0.
What is the best cluster? For a given ‘1’, we say that

the best cluster is the one with the smallest weight (most
unusual). Consider an algorithm that, for a given ‘1’, se-
quentially examines levels k = 0, 1, 2, . . . in an attempt to
find the best cluster. Every time a better cluster is found, the
algorithm outputs the corresponding value of k.
Algorithm 1
W ←∞
for k ∈ {0, 1, 2 . . .}

if ∃ a cluster of size s at level k s.t. W (k, s) < W
then W ← W (k, s)

output k

Definition 5: Given a ‘1’ in a random binary string of
infinite length, let P (k) be the probability that k is the last
output performed by the above algorithm.

Why are we interested in P (k)? When the best cluster
is at level k, k may be used to distinguish the type of
structure. We do not make a claim that there is a one-to-one
correspondence between k and the neighborhood as listed in
Table I, but a probabilistic argument is in accordance with
our line of thought. Therefore, we hope that P (k) will reflect
a distribution that is reasonable when k is interpreted as the
value in Table I. The following result shatters the hope but
motivates an interesting approach described in the following
section.

Theorem 1: P (k) = 0 for all k.
Proof: First observe that when p > 0, the probability

that the algorithm will stop finding clusters is 0. Assume that
the cluster at level k has size s and that the best cluster up
to level k has weight W ∗.

Now we show that there is a probability greater than a
positive constant to find a better cluster at level k+1. Either
W (k + 1, s+ ∆s) < W ∗ for all ∆s > 0, or there exists an
s0 > s such that W (k+1, s0) ≥W ∗ and W (k+1, s0 +t) <
W ∗ for all t > 0. In the former case, the best cluster will
change with probability 1 − q2 (the probability that there
is a cluster at level k + 1). In the latter case, consider the
probability t∆ss,k that the size of the cluster at level k + 1 is
s+ ∆s. We can show (omitted here) that this probability is
bounded as follows:

t∆sk,s ≥ p2wk+1,∆s−1

For s+ ∆s > s0 i.e. ∆s > s0 − s, we have∑
∆s>s0−s

t∆sk,s ≥ p2
∑

∆s>s0−s
wk+1,∆s−1 = p2

∑
∆s≥s0−s

wk+1,∆s

> p2
∑

∆s≥s0

wk+1,∆s ≥ p2(1−q2)W (k+1, s0) ≥ p2(1−q2)W ∗

which is a constant given W ∗.
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Therefore, for every cluster weight W ∗, there is a constant
non-zero probability that the best cluster will change. This
proves the theorem.

Since the distribution P (k) does not exist, it imposes
several difficulties when we look for the best clusters in finite
strings. Specifically, the best clusters will tend to be larger in
long strings, and smaller in short ones. The problem can be
solved by introducing a third symbol that “breaks” clusters,
that is, prevents them from merging at higher levels. Indeed,
such breakers exist in biological structures; for instance,
Proline and Glycine are typically considered to be structure
breakers in helices: with a rigid loop side chain, Proline lacks
the flexibility to conform its φ and ψ angles to the typical
structures (but not the structures that require this unique
rigidity of Proline, e.g. polyproline helices). Glycine, on the
other hand, has the most flexible side chain and, hence, is
more likely than others to mediate a change in structure.

B. The introduction of breakers

We now assume that an amino acid sequence is a string
over the alphabet {‘1’,‘0’,‘π’}, where ‘π’ stands for structure
breaker. Let π > 0 also denote the probability of breakers.

p+ q + π = 1

With the introduction of breakers, the merging of clusters
may now stop for different reasons. The probabilities and
weights are updated accordingly. A cluster at level k may
end with:

no breakers: w(0π)
k,s =

{
(βk,s − βk−1,s) · q2k (k > 0)
0s−1 (k = 0)

breaker on one side: w(1π)
k,s = (βk,s − βk−1,s) · 2qkαkπ

on both sides: w(2π)
k,s = (βk,s − βk−1,s) · (αkπ)2

W (xπ)(k, s) =
1
ζk

min
( s∑
t=1

w
(xπ)
k,t ,

∞∑
t=s

w
(xπ)
k,t

)
for x ∈ {0, 1, 2}

where ζk =
∑∞
t=1(w(0π)

k,t +w
(1π)
k,t +w

(2π)
k,t ) which is 1 when

k = 0 and [(1−pαk)−2− (1−pαk−1)−2](qk+αkπ)2 when
k > 0.

The probability P (k) as defined in the previous section
is now greater than 0 for every k because Algorithm 1 will
stop finding clusters with probability 1 (when breakers are
encountered on both sides of the given ‘1’).

We can obtain P (k) by running Algorithm 1 on random
sequences. In Figure 2, we show P (k) when p = 0.33, q =
0.62, and π = 0.05. These are the approximate probabilities
when hydrophobic amino acids are mapped to ‘1’ and Proline
is mapped to ‘π’ (the convention used in HCA).

IV. DSSP DATA AND SECONDARY STRUCTURE
PREDICTION

The (non-redundant) DSSP database [21] is a reposi-
tory of annotated protein secondary structures: α-helices,
310-helices, and π-helices are marked by “H”, “G”, and “I”
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Fig. 2. Result of simulation on random sequences for P (k) with p = 0.33,
q = 0.62 and π = 0.05.

respectively. Extended β-strands are marked by “E”. For each
amino acid in the sequence, we would like to predict whether
it belongs to a helix, a strand, or neither (a coil). When
predicting three states, a standard measure of accuracy is the
Q3 score, defined the number of correctly predicted amino
acids divided by the number of amino acids in the sequence
(the sequence length). Therefore, to compute our Q3 score,
we consider amino acids marked by “H”, “G”, and “I” to
belong to a helix, those marked by “E” to belong to a strand,
and the remaining amino acids (not marked) to belong to a
coil.

A. Random search for the best mapping

To successfully apply our model to real protein data,
we need to know the best way to map 20 amino acids
to {‘1’, ‘0’, ‘π’}. Then with the knowledge of the amino
acids’ frequencies and this mapping alone, we can obtain
the probabilities p, q, and π.

We use a standard genetic algorithm to find the best
mapping. A mapping is represented by a string of 20 symbols
over the alphabet {‘1’, ‘0’, ‘π’}. First, we generate a random
initial population of mappings. Then, we select random
sequences from the DSSP database and run a prediction
algorithm (described below) on these sequences for each
mapping in the population. The fitness of a mapping is the
Q3 score it achieves. The best 50% of the population are
saved to the next generation, and the remaining 50% are
produced by mutations and recombination of the saved ones.

B. Prediction algorithm

Given a mapping of the 20 amino acids to {‘1’, ‘0’, ‘π’},
we compute the probabilities p, q, and π. For every ‘1’
in the string, we find the best cluster using Algorithm 1.
When finding those clusters in finite sequences, we assume
imaginary “breakers” on both ends of the sequence. This
choice is not critical in terms of performance, but a way
to maintain consistency of the method. Figure 3 shows an
example cluster coverage for the HCA mapping of amino
acids {V, I, L, F, Y, M, W}→‘1’ and {P}→‘π’.

Once all the best clusters have been found, we make a pre-
diction guided by Table I in the following way (there should
be better ways to make predictions by also considering the
size of a cluster, but we stick to this one for now):
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ESADLRALAKHLYDSYIKSFPLTKAKARAILTGKTTDKSPFVIYDMNSLMMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRSVEAVQEITEYAKSIPG
HHHHHHHHHHHHHHHHHH HHHHHHHH EEE HHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHH

k=0 ...................................................................................................
k=1 ........................................1111.......................................................
k=2 ........................................****-2.....................................................
k=3 ....3--3...33--33--3....................****-*--333....3-3--3......................................
k=4 ................................................................................4--4--4--4--4---4..
k=5 ...................................................................................................
k=6 ...................................................................................................
k=7 ...............................................................7------7-7-77----*--*--*--*--*---*..
k=8 .....................8-------88....................................................................

Fig. 3. Sequence is shown with the DSSP annotation to illustrate the cluster coverage of structures. A ’-’ denotes a hydrophilic amino acid in the cluster.
A number in the cluster (always equal to its level) indicates that this cluster is the best for the corresponding hydrophobic amino acid, and a ’*’ means
that it is not.

Algorithm 2
for every amino acid

if covered by a cluster at level 1 ≤ k ≤ 2
then mark it as Strand
else if covered by a cluster at level k ≥ 3

then mark it as Helix
else mark it as Coil

C. Prediction heatmaps

The prediction algorithm described above was initially
conceived from information in Table I, and our premise that
structures with a neighborhood of k should probabilistically
reveal the best clusters at level k. We back up this intuition
with actual data from DSSP. Figure 4 shows heatmaps for
how many times the best cluster is at level k with size s, for
‘1’s in strands, helices, and coils. We used the best mapping
obtained by the genetic algorithm described earlier.
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Fig. 4. Heatmaps of best clusters at level k with size s for strands, helices,
and coils.

In addition, Figure 5 shows heatmaps that justify the
distinction of strands, helices, and coils.
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Fig. 5. Left: the difference between the first two heatmaps in Figure 4
(helix minus strand). Right: the superposition of all three heatmaps in Figure
4 with an RGB scheme.

V. DE NOVO DISCOVERY OF HYDROPHOBICITY AND
SOME RESULTS

We obtain {V, I, L, F, Y, M}→‘1’ and {P, G}→‘π’ as the
best mapping (given the Q3 fitness). As argued previously,
Proline (P) and Glycine (G) are the most biologically rea-
sonable breakers. The other six amino acids are known to be
highly hydrophobic.

If we don’t care to distinguish between strands and helices
(thus reverting to a similarly defined Q2 fitness), our genetic
algorithm gives {V, I, L, F, Y, M, W, A}→‘1’ or {V, I,
L, F, Y, M, W, A, Q}→‘1’, and {P, G}→‘π’ as the best
mappings. The inclusion of Trypyophane (W), Alanine (A),
and Glutamine (Q) as the next hydrophobic amino acids is
known to be a biologically reasonable choice.

We emphasize here that the algorithm itself is not explic-
itly exploring hydrophobicity. This confirms that a binary
system (with a breaker) is adequate to model the evolution of
structures, and it happens that hydrophobicity plays that role
very well. Clearly, if our model were just a computational
artifact, one would expect to obtain arbitrary mappings into
{‘1’,‘0’,‘π’}. As it turns out, however, our model infers
hydrophobicity as a key property for guiding the formation
of secondary structure. Some results using the best mappings
mentioned above are shown in Table II.

VI. EVOLUTIONARY ALGORITHMS AND SOME INSIGHTS

We explore the possibility of designing evolutionary mech-
anism based on our model that lead to the convergence of
p and π (and thus q as well) to their typical values. For
this, we consider two evolutionary algorithms in which we
envision the biological system as an entity that learns. Given
initial values for p and π, p0 and π0, it recomputes those
probabilities, pi and πi for every iteration i, conditioned on
the best clusters. This is repeated until the process converges.

A. Micro evolution from the view of a ‘1’

The main object of this evolutionary algorithm is the best
cluster for a given ‘1’. However, in order to recompute both
p and π, we extend a cluster at level k with a trailing region
on both sides consisting of either k ‘0’s or until we encounter
a ‘π’ (this is naturally dictated by the system).

Define E[p] =
∑∞
k=0 pkP (k|pi−1, πi−1) (E[π] =∑∞

k=0 πkP (k|pi−1, πi−1)), where pk (πk) is the probability
of ‘1’ (‘π’) in an infinite string consisting of only random
extended clusters at level k (given pi−1, qi−1, and πi−1),
and the notation P (k|p, π) is simply P (k) when p and π
(and q) are given. This evolves as described in Algorithm 3
by computing new values for p and π at iteration i as E[p]
and E[π], respectively. The new values are then weighted
by probability pi−1 (the current probability of a ‘1’) and the
current values by 1 − pi−1. The weights produce smoother
curves, but simply making pi ← E[p] and πi ← E[π] results
in the exact same behavior.
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TABLE II
FITNESS COMPARISON FOR OUR APPROACH (IMPROVED FROM 0.55 TO 0.57 WITH SOME HEURISTICS) AGAINST OTHERS ON SIMILAR DATA SETS, E.G.
CB513 AND CB396 [6]. THE BLIND STRATEGY OF CALLING EVERY AMINO ACID BY THE MOST FREQUENT CATEGORY (COIL IN THE FIRST ROW AND

NOT COIL IN THE SECOND) IS ALSO INCLUDED FOR COMPLETENESS.

Our approach Chou-Fasman Improved C-F∗ GOR† State of the art‡ Blind
strand, helix, coil 0.57 0.46 0.56 0.62 0.8 0.44
coil, not coil 0.67 0.61 0.56

∗ includes some data analysis based on wavelets.
† GOR III uses known (non independent) probabilities of amino acids in α-helices and β-strands.
‡ State of the art uses alignment of homologs and neural networks.

Algorithm 3
[p0, π0]← any such that p0 + π0 < 1
for i ∈ {1, 2, 3, . . .}

pi ← pi−1E[p] + (1− pi−1)pi−1

πi ← pi−1E[π] + (1− pi−1)πi−1

The simulation of Algorithm 3 is depicted in Figure 6.
Regardless of (p0, π0), (p∞, π∞) drifts to (1, 0) (the lower
right corner of Figure 6). If we envision a control mechanism
against unlimited growth in p, then π would stabilize at the
point where the curve becomes horizontal. For instance, a
variation of Algorithm 3 that makes pi ← min(pi, 1−q−πi)
after every update, confirms a convergence of π around 0.047
for every fixed q ∈ [0.4, 0.65]. This shows the resilience of
π in the face of small perturbations on p, and provides a
compelling argument for the existence of typical probabilities
when Proline is considered as the only breaker (π = 0.047
is the probability of Proline).
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Fig. 6. The stability of π around 0.047, if there is a control mechanism
against unlimited growth in p that contains it in the range 0.3 < p < 0.55.

B. Macro evolution from a global view

Starting with ‘π’, consider a string obtained by generating
symbols in {‘1’,‘0’,‘π’} with the probabilities pi−1, qi−1,
and πi−1, respectively, until the occurrence of another ‘π’.
Call such a string a chunk. Define the coverage of a chunk as
the string consisting of all the bits in the chunk that belong
to a best extended cluster (as defined in the previous section)
at any level k. We compute pi and πi as the probabilities
of ‘1’s and ‘π’s, respectively, in an infinite string made of
random coverages. We then control these computed values
by a damping factor 0 < α ≤ 1. This evolves as described
by Algorithm 4.

Algorithm 4
[p0, π0]← any such that p0 + π0 < 1
for i ∈ {1, 2, 3, . . .}

[pi, πi]← probabilities of ‘1’ and ‘π’, respectively, in an infinite coverage
[pi, πi]← α[pi, πi]

The simulation of Algorithm 4 is depicted in Figure
7. For every fixed value of α, [p∞, π∞] converge to a
point on the curve. It is worth to note here that replacing
[pi, πi] ← α[pi, πi] by [pi, πi] ← 1−q

pi+πi [pi, πi] for a fixed
q results in the same convergence. Surprisingly, the curve
passes through the point [p, π] = [0.45, 0.12] corresponding
to q = 0.43, which roughly represents the probabilities given
by the mapping {V, I, L, F, Y, M, W, A, Q}→‘1’, and
{P, G}→‘π’. This is one of the best mappings obtained
when prediction had to distinguish between regular structure
(helices and strands) and non-regular structure (coils).
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Fig. 7. Convergence of p and π for every fixed α. The curve passes through
[p, π] = [0.45, 0.12] corresponding to q = 0.43. The filled squares are the
average [p, π] for the 200 largest species in DSSP and the mapping {V, I,
L, F, Y, M, W, A, Q}→‘1’, and {P, G}→‘π’. The large open square, circle,
and triangle are the average [p, π] obtained from the whole DSSP database
computed for three corresponding mappings.

In obtaining the above results, we make no explicit ref-
erence to structural biology or specific evolutionary mecha-
nism. Yet, the two algorithms, Algorithm 3 and Algorithm
4, suggest that biological structures may have been the
subject of similar evolution, and provide some evidence for
the existence of typical probabilities from an evolutionary
perspective. In additions, they show the distinctive roles of
Proline and Glycine in structure formation: while Proline
is a structure breaker at the micro level, Glycine acts, in
addition, as a breaker between different types of structures at
the macro level. This view is consistent with Ramachandran’s
classification of proteins in which Proline is the most rigid
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(hence a hard breaker of a structure) and Glycine is the most
flexible (hence a soft breaker of a structure that possibly
mediates a change in structure).

VII. CONCLUSION

Our model/algorithm succeeds in making initial non-trivial
predictions with only minimal information obtained from
structural biology. Compared to methods in the same class
(those that do not require information of known structures or
homologs), we observe improved (or similar) performance.
It can be interesting to apply our model to more advanced
prediction techniques and explore new ways of mapping se-
quences to binary, e.g. one may account for some dependence
among the bits. We hope that our model or an extension of
it can lead to a better understanding of folding mechanisms
and structure formation from a puristic perspective, as our
evolutionary algorithms might suggest.
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