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Abstract—1In the recent years high throughput data about
biological processes has become available and thus opened a
wide range of possibilities of research in multi-disciplinary
areas, like network science. An idea that has been widely
accepted is the fact that no life can exist without complex
systems formed by interacting macromolecules. Rather than
a single gene being responsible for a single phenotype (central
dogma), it has been shown that the interaction between several
genes is responsible for a given phenotype, a concept called
System Biology. Identifying patterns of interactions (motifs)
in these complex networks has attracted the attention in the
scientific community, given that these networks are often very
dense and dynamic. In this work we focus on a particular kind
of biological network, a regulatory network where each node
is a transcription factor and two nodes are connected if one
of them encodes a transcription factor to another one that is
regulated by this transcription factor. We focus on a specific
kind of motif, a dense overlapping region (DOR) that claims
that a set of genes regulated by different transcription factors
are more overlapping than expected at a random network. We
use different community identification algorithms in order to
identify which algorithm best suits to the task of identification
of this particular motif.

I. INTRODUCTION

According to [1] most of the interesting accomplishments
achieved in biological research has been in genomics. One
example is the genome sequencing of many species, includ-
ing the human genome, which has created many possibilities
for a better understanding of the function of many genes from
large-scale sequencing processes. We currently have a good
understanding of life at the molecular level, and recognize
that we need to see gene structures not only in isolation but
also as sets, and how they interact with one another [2].

By accepting the concept of system biology, we are not
denying the importance of reductionist approaches. Reduc-
tionist approaches are just limited concerning the function
of presenting a comprehensive picture of life [1]. One fact
that supports the idea of system biology is that individual
cells when separated from their neighbors lose many of their
functional and structural attributes [3].

The notion of systems biology dates back from hundreds
of years ago when the word organism was initially used to
describe living animals and plants as organizations, where
each part is reciprocally end and means. Many advantages
have rise with this new approach like, for example, evolution-
ary mechanisms can be better understood in light of complex
molecular systems [4].
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With the current availability of terabytes of data in many
domains, including biological processes, communications,
and social interactions, a variety of research actives have
started to focus on modeling and identification of global
network properties and characteristics. These include the
small world property [5] and scale-free networks [6]. One
of the first networks structures analyzed with this approach
was the network representing scientific collaborations and
co-publications [7]. While important, such global metrics
must be augmented with the understanding of basic structural
elements, the building blocks of the network. These building
blocks are often referred to as network motifs [8] and
represent recurring structures and patterns of connections.

In [8] the authors present several different kinds of motifs
normally found in different types of networks. In their work,
the authors justify the presence of the motifs to the way
in which the network was designed. More specifically in
biological networks the work of [9] identifies three major
patterns that are significantly present in the network. Among
them, a motif called dense overlapping regulons (DOR),
requires special attention. The motif is defined as a layer
of overlapping interactions that is much more dense than
the corresponding structures in randomized networks. The
result is a structure characterized by loosely connected and
internally dense regions of interactions. These regions are
often called communities.

There are many community identification algorithms in
literature. In general, such algorithms rely on the partition
of the data into a certain number of communities (groups,
subsets or categories) [10]. There is no clear definition of a
community, but most authors characterize a community by
its internal homogeneity and the external separation [11].
In this work we evaluate the results of four community
identification algorithms aiming to identify which bets suits
for the identification of DOR motifs in a regulatory network.

II. RELATED WORK

Gene expression data is obtained through microarray ex-
periments [16] and is commonly used for study of biological
networks. Community identification algorithms have been
widely applied in these kinds of datasets, for example for
the construction of coexpression networks [12]. In a coex-
pression network each node represents a gene, and two nodes
are connected if their expression levels are similar [13].

The work of [14] shows results of clustering 118 genes
using a hierarchical community identification algorithm in
which members of the same clusters tend to participate
in common processes. In a later work [15], the authors



apply a systematic set of statistical algorithms and clustering
algorithms to identify transcriptional regulatory sub-networks
in yeast without any a priori knowledge of its structure.
Their results uncovered new regulons and their putative cis-
regulatory elements.

Changes in the modules in a coexpression network have
also been associated with the possibility of cancer. In the
work of [17] and [18] cluster algorithms have identified
changes in expression patterns in individuals with and with-
out cancer.

Coexpression networks allow the use of mining cluster
algorithms like Self-Organizing Maps [19] and K-Means[20],
once it is possible to calculate the distance between any two
nodes based on the expression values. These algorithms are
not valid in regulatory networks. Examples of the use of
these algorithms in coexpression networks can be seen in
[21] and [22].

The work of [10] presents a theoretical survey of clustering
algorithms accordingly to their applicability. In that paper,
the authors conclude that there is no clustering algorithm
that can be universally used to solve all problems, as new
technologies have generated greater volumes of more com-
plex data, requiring more powerful clustering algorithms.
A second conclusions highlighted by the authors is that
the preprocessing and post-processing of the data are as
important as the own clustering algorithm.

III. THE REGULATORY NETWORK

In order to evaluate community identification algorithms
in a regulatory network we choose a specie that is considered
one of the best characterized, the bacteria Escherichia coli
K-12. The data is available in the RegulonDB, a relational
database which provides information on transcriptional regu-
lation that has been manually curated from original scientific
publications [23]. Each node is a transcription factor and two
nodes are connected if one of them encodes a transcription
factor to another one that is regulated by this transcription
factor. The network can be seen in Figure 1.

In the Figure 1 we can see that the network is not entirely
connected. From the 164 nodes, 26 have only one connection
to itself (autoregulation), 10 of them are connected to a
single other node and we have one triad which nodes have
none other connection beyond the triad. In the end, 125
nodes form the giant component of the network. The nodes
are colored accordingly to its degree. As illustrated in the
figure, most nodes have only a few edges while only a
few nodes (crp, h-ns and fnr) have more than a few edges.
This behavior of the network lead us to investigate if the
degree distribution followed a power law distribution [6]. If
the degree distribution of the network follows a power law
distribution, the network is called Scale Free. Graphically
scale free networks present a long tail, where the probability
of a node have a degree k is inversely proportional to k,
formally:

P(k) ~ k™ * (1

Where the exponent ¢ is a positive constant and normally
assume values between two and four [6]. The long tail

Fig. 1.

Regulatory Network of Escherichia coli K-12.

behavior of the data can be seen in Figure 2 and when
plotted in a log-log chart (inset) it approaches to a linear
regression. The linear regression of the data is considered
high assuming value of 0.91 and the inclination of the line
(exponent) is -2.87. Thus we can affirm that a very small set
of nodes is responsible for trigger the production the majority
of the transcriptional factors in the network, once they are
connected to a large percentage of the network.
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Fig. 2. Degree distribution of the regulatory network of E. coli. The inset
shows the distribution in a log-log plot.

In order to have a general understanding of the network
we also evaluated if the network can be classified as a small
world network. In a small world network the average path
length of the nodes is short, in fact it should be O(log
n) where n is the number of nodes of the network. Not
only the average path length needs to be short but also
the network needs to be clustered [5]. The measure of



TABLE I
RESULTS OF THE CLUSTERING COEFFICIENT (C) COMPARED TO THE
CLUSTERING COEFFICIENT OF A RANDOM NETWORK OF THE SAME SIZE
(Crand) AND THE AVERAGE PATH LENGTH (/) COMPARED TO THE LOG
(n), WHERE n IS THE NUMBER OF NODES OF THE NETWORK.

Network C Crand l log (n)
Directed 0.1 0.048 2.38 2.21
Undirected 0.31 0.094 3.1 2.21

clustering of a network is done by calculating the fraction
of possible triangles in the neighborhood of each node [24].
To evaluate if the network is clustered we need to compare
its clustering coefficient to the clustering coefficient of an
equivalent randomized network, in other words, a network
with the same number of nodes and edges, but with an
edges choice randomized. As shown in Table I the clustering
coefficient in the real network is larger than the clustering
coefficient in the randomized network in both situations, if
we consider the network directed or undirected. We can also
see that the average path length is very close from log (n),
where 7 is the number of nodes of the network. Thus we can
conclude that the network has small world characteristics.

IV. COMMUNITY IDENTIFICATION ANALYSIS

In this paper we use four well known community detection
algorithms for the identification of motifs in the regulatory
network of E. coli. The goal is to identify which algorithm
is better suited for the task. The first algorithm was proposed
by Girvan and Newman [25] and it is based on consecutive
removal of edges in the network until the communities are
formed. The second algorithm is based on the optimization of
clustering keeping in mind that in a community the number
of edges intracommunity is higher than the number of edges
intercomunities [26]. The third algorithm was design with the
idea that if a set of nodes in a network forms a community
then would be possible for a click (fully connected graph)
of size k to *walk’ inside of the community [27]. The last
algorithm is inspired in swarm intelligence, where each node
locally chooses its community trying to minimize its entropy
[28]. In this section we further describe and apply each of
the proposed algorithms to the E. coli dataset.

A. Betweenness Centrality Method

The betweenness centrality method was proposed to mit-
igate some of the shortcomings in hierarchical clustering
algorithms. Differently from methods that try to build a
metric to identify which nodes are close to each other,
this method focuses on the edges that are more ’central’
in the network. The choice of the central edges is based
on the betweenness centrality of an edge. The concept of
betweenness centrality was first proposed by Freeman [29].
In that work, Freemen defines the betweenness centrality of
a node i as the number of shortest paths between any pairs
of nodes in the network that pass through i, thus measuring
the influence of the node in the network. In the work of [25]

this concept was extend to edges, having in mind that the
edges with highest betweenness centrality are those who tend
to exist inter-comunities. By progressively eliminating edges
with high betweenness centrality, the network will eventually
acquire a community structure.

Before using this algorithm, we need to eliminate those
nodes in the network that do not belong to the giant compo-
nent of the network, once these nodes already form a isolated
community (even if it has only one or two nodes). As we
can see in Figure 3 this algorithm did not yield the expected
results for this particular network, create large communities
of nodes. In this network most paths are short, having a
maximum length of three or four. Another characteristic of
this network is that the hubs of the network are hubs because
of outgoing edges, thus most of shortest path do not pass
through that node or its edges, making the edges located in
periphery strong candidates for removal due to their high
centrality measure.

Fig. 3. Results of edges removal for, respectively, 10%, 20% and 40% of
the edges in the network.

This algorithm is very dependent of the structure of the
network to provide satisfactory results. Networks that have a
more 'natural’ community structure are more suited for this
particular algorithm, which is not the case of the complex
structure of a regulatory network.

B. Modularity Optimization Method

The modularity optimization method is a heuristic one;
it gives an approximate solution to the optimization prob-
lem for community identification. The method, proposed by
Blonde et al in [26], divides the network in communities by
evaluating a metric of the quality of the community called
modularity. The modularity of a community is a scalar value
between -1 and 1, that measures the density of links intra-
communities in comparison to links inter-communities.

The algorithm is composed of two main phases, in the first
one each node is assigned to a community and interactively
it will change its community if this change will increase
the modularity. In case of having more than one option
that will increase the modularity, the node will move to the
community with the highest modularity gain. The second
phase consists of treating each community formed in the
first phase as a single node, edges inside the community
are treated as self loops. In this phase the merge of entire
communities is considered instead of only nodes. Both
phases are successively executed until no gain in modularity
is achieved.

Accordingly to the authors the steps of the algorithm are
intuitive and easy to implement, another advantage is that



the outcome is unsupervised. We used the implementation of
the tool Gephi [30]. As we can see in Figure 4 the method
creates five communities, represented by the different colors
in the network.
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Fig. 4. Results of community identification using modularity optimization.

We can notice that only the red and cyan communities
do not have a hub that connect most of its members. The
remaining communities have a central hub, like the A-ns node
in the blue community and the crp node in the orange one.
What is interesting in this result is the amount of edges inter-
communities, for example we can notice a large amount of
edges connecting the cyan and orange community, what can
indicate the existence of a dense overlapping motif.

C. Clique Percolation Method

All the methods presented so far were exclusive ones,
in other words, a node can only participate of a single
community. In this method each node has a membership
number that is the number of communities that the node
belongs to. The basic principle of the algorithm is that a
typical community consist of several fully connected sub-
graphs that tend to share many of their nodes, this kind of
community is called a k-clique-community [27]. Formally a
k-cliqgue-community is the set of nodes that can be reached
from each other through a series of adjacent k-cliques. It is
possible to relaxing this definition by allowing incomplete
k-cliques but this is equivalent to lowering the values of k.

One advantage of this method is that it offers the pos-
sibility of looking at the network from a higher level of
organization and locate the communities that play a key role
within the web of communities (those with many overlapping
nodes). In this work we used the implementation provided
by the tool CFinder [31].

The Figure 5 presents the results of this algorithm. In
the left side of the figure, the network is divided in nine
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Fig. 5. Results of community identification using clique percolation. The
network in left has the size of the clique equals to three. The network in
the righ has size of the clique equals to four.

different communities that share a clique of size three. In
this scenario we notice that the majority of nodes belongs to
a single community while the remaining communities have
just a couple nodes. An interesting fact in this community
structure is that the hubs of the network are those that make
the connections between the communities, for example, the
nodes crp and far.

In the right side of the figure we have the results using
a clique of size four. The nodes colored in gray were not
assigned to any community, only the others. We notice
that only five communities were identified with a minimum
number of nodes in each (four). This result indicates the
difficulty of having a clique of size four inside of regulatory
networks.

D. SOCIAL

In the algorithm proposed by [28] each node is responsible
for determining the community to which it belongs. This
decision is based on the concept of Shannon entropy [32]
and is made locally, which means that a node only needs in-
formation about its immediate neighbors. The algorithm was
inspired in swarm intelligent systems, where each individual
in the system interact only with its immediate neighborhood,
thus obtaining high efficiency and robustness [33]. The
concept of a node’s entropy encapsulates the certainty of each
node regard to its current community. At each iteration if a
node have neighbors in different communities it calculates
the entropy of joining the communities of its neighbors and
has a higher probability of joining that gives a lower entropy.
This step is repeated until the entropy of the entire network
stabilizes.

Accordingly to its creators this algorithm is well suited
for dynamic networks where nodes join and leave constantly.
The decentralized design of the algorithm does not require
extensive recalculation of the communities in case of a new
node joining the network or a node leaving the network, all
the changes are made locally.

The results of the algorithm can be seen in Figure 6. It
was identified 80 different groups, which 45 nodes form
isolated groups (groups with one node only). This happens
due to the fact that some nodes does not have outgoing edges
only incoming ones, thus they do not have any neighbor
to consider joint its community. The remaining groups only



Fig. 6. Results of community identification using the algorithm SOCIAL.

have two or three nodes. We believe that large communities
have not appeared in this network because this network has
not an usual community structure, like for example social
networks.

V. CONCLUSIONS AND FUTURE WORK

In this work we analyzed the regulatory network of
Escherichia coli K-12. The network presented characteristics
of a scale free network, in which the degree distribution
follows a power law. It also has small world properites,
displaying high clustering coefficient and short average path
length, which is common in signal processing networks [9].

We have also explored different community identifica-
tion algorithms for motif identification. First we applied
an algorithm based on edges betweenness centrality. The
algorithm presented poor results, likely because the edges
with highest centrality were mostly located in the periphery
of the network. A second method based on modularity
optimization was then applied. The second method presented
good results, especially because we wanted to identify the
communities that have a large number of edges connecting
them, an indicator of a DOR motif. We also perform a
community identification algorithm that uses the concept of
clique percolation and due to the sparse structure of the
network the balance between the communities was very low,
leading to few communities with a large number of nodes and
a large number communities with few nodes. As we increase
the size of cliques, the results only get worse, because it is
more rare to find cliques of a bigger size. Finally we used an
swarm based algorithm for community identification, it has
identified a large amount of groups with a couple of nodes
inside. This behavior is primarily due to the fact that the
directional edges of the network did not allowed the nodes

consider some neighbors that have incoming edges to it.

Although some results of the algorithms used in this work
are not useful in our initial task of identifying a DOR motif,
one of its contributions relates to the fact that it explores the
behavior of well known community identification algorithms
in networks that are quite different from social networks;
which were the networks in which those algorithm were
designed and first tested.

As part of our future work, we intend to further combine
coexpression information with regulatory information aiming
to have a more realistic network and then compare how the
clustering results of this hybrid network would differ from
those obtained in this work. We also intend to investigate
the behavior of these clustering algorithms in other species,
preferable those who have well known interactions, like
Saccharomyces cerevisiae, the yeast. We also want to analyze
the behavior of such algorithms in a undirected regulatory
network, which we presume that will generate quite different
results, and thus it can give us a different perspective of the
regulatory system of the studied specie.
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