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Abstract— Albaneze and Monk [1] have demonstrated that
it is impossible to identify the three-dimensional support of
any primary current living within a conducting medium, from
electromagnetic measurements outside the conductor. However,
this is not true if the primary current is supported in a subset
of dimensionality less than three. In the present report, we
demonstrate the truth of this statement by constructing an
analytic algorithm that identifies the location, the orientation,
and the size of a localized linear distribution of current
dipoles within the brain, from a complete knowledge of the
electric potential recorded by an electroencephalographer on
the surface of the head.

I. INTRODUCTION

Electroencephalography (EEG) and Magnetoencephalog-
raphy (MEG) are the two brain imaging modalities which
have the necessary temporal resolution (10−3 sec) for the
study of the functional brain [6], [8]. Since the brain consists
of conductive material, any primary neuronal excitation in
the brain generates a secondary inductive current within
the whole brain tissue. In the framework of the quasi-static
theory of Electromagnetism [7], [9] these two currents give
rise to an electric potential and a magnetic flux density field.
The calculation of the values of the electric potential on the
surface of the head forms the forward problem of EEG, while
the calculation of the magnetic flux density a few centimeter
outside the head forms the forward problem of MEG. The
inverse EEG problem seeks to identify the neuronal current
within the brain from the knowledge of the electric potential
on the surface of the head. The corresponding inverse MEG
problem seeks this neuronal current from the knowledge of
the magnetic flux 3 to 5 centimeters outside the head, where
the SQUID [8] measurements are recorded.

As far as the question of uniqueness of the solutions of
these two inverse problem is concerned, that is the character-
ization of the class of currents that provide identical eclectic
potentials on the head, and identical magnetic fluxes outside
the head, the ultimate results have been obtain recently
[3],[5]. The definitive result states that neither the EEG nor
the MEG measurements can recover completely the primary
neuronal current, and therefore no uniqueness for the inverse
problems exists. An interesting result was obtained along this
line in [1]. It states that, if the neuronal current is localized
in a genuine three dimensional subset of the brain tissue, a
hypothesis which is almost always true, then, it is impossible
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to recover even the support of the neuronal current either
from EEG or from MEG measurements. This impossibility
reflects the fact that the current and the relative generated
fields are governed by adjoint operators. In fact, this result
was also demonstrated in [4], where it is assumed that the
primary current is supported in a small sphere centered at
the point r0 with radius ε, and proved that although it is
feasible to recover the location of the center of the sphere,
it is impossible to obtain its radius since in the process
of the necessary analytic calculations the radius disappears
from the controlling equations. However, this impossibility
is not true if the support of the primary current lives in a
subset with dimensionality lower than three. The goal of
this report is to demonstrate a simple one dimensional case
where the location, the orientation, and the size of a small
linear distribution of current dipoles can be recovered from
a complete knowledge of the EEG data.

The work is organized as follows. Section 2 involves the
statement of the particular EEG problem. Section 3 provides
the results of a large amount of analytic calculations needed
to express the electric potential, up the degree three, in
closed analytic forms. The corresponding inverse problem
is postulated in algebraic form in Section 4 and it is shown
that all the basic characteristics of the current distribution
are indeed recoverable.

II. MATHEMATICAL FORMULATION OF THE EEG
PROBLEM

Let us assume that the brain-head system is modeled
geometrically as a sphere of radius α, and physically as a
homogeneous conductor with conductivity σ. Let denote by
Jp the primary neuronal current within the brain, which is
actually represented as a discrete or continuous distribution
of current dipoles with specific dipole moments. The electric
potential u−, generated in the space r < α, solves the interior
Newmann boundary value problem

σ∆u−(r) = ∇ · Jp(r), r < α (1)
∂nu

−(r) = 0, r = α (2)

and the electric potential u+, generated in the space r > α,
solves the exterior Dirichlet problem

σ∆u+(r) = 0, r > α (3)
u+(r) = u−(r), r = α (4)
u+(r) = O(1/r2), r → +∞. (5)

Suppose now that a neuronal current is supported on a
line segment of lenght 2L with center at the point r0 =
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(x01, x02, x03) and orientation along the direction α̂ =
(α1, α2, α3).

We know that [2], if the primary current is given by a
single dipole at r0 having the moment Q, then the solution
of problem (3)-(5) is given by

u+(r) =
1

4πσ
Q · ∇r0

∞∑
n=1

2n+ 1

n

rn0
rn+1

Pn(r̂ · r̂0), r > α (6)

where Pn denotes the Legendre polynomial of degree n.
Because of linearity the corresponding solution for the above
case where the currents is distributed over the line segment,
all we need to do is to replace the isolated dipole (r0,Q)
in (6) with the distributed current (r′,Jp(r′)) and integrate
over the prescribed line segment

r′(t) = r0 + tα̂, t ∈ [−L,L]. (7)

For a localized current with a small L, we can represent Jp

by the linear approximation of its Taylor expansion around
the center point r0, that is by

Jp(r′) ≈ Jp(r0) + t
dr′(r0)

dt
· ∇Jp(r0)

= Q+ tl (8)

where the vector Q represents the average value of the
moments and the vector l represents the average directional
derivative of the current along the direction â.

III. SOLUTION OF THE FORWARD PROBLEM

Extremely long and tedious calculation of integrals, based
on the terms n = 1, 2, 3 of the expansion (6), are needed to
obtain the closed form expression in the general case. In fact,
performing all the indicated differentiations and integrations
with the terms n = 1, 2, 3 of the expansion (6), in the generic
case, we arrive at the expression

u+ (r) =
1

4πσ

[
H1(r)

r3
+
H2(r)

r5
+
H3(r)

r7

]
+O

(
1

r5

)
(9)

where Hi , i = 1, 2, 3 are given by

H1 = 6L (r ·Q) (10)

H2 =
5

2

(
3r ⊗ r − r2Ĩ

)
:

(
2Lr0 ⊗Q+

2

3
L3α̂⊗ l

)
(11)

H3 = 35L(r0 · r)2 (r ·Q) +
35

3
L3 (α̂ · r)

2
(r ·Q)

+
70

3
L3(r0 · r)(α̂ · r)(l · r)− 14Lr2(r0 · r)(r0 ·Q)

− 14

3
L3r2(α̂ · r)(α̂ ·Q)− 14

3
L3r2(r0 · r)(α̂ · l)

− 7Lr2r20(r ·Q)− 14

3
L3r2(α̂ · r)(r0 · l)

− 7

3
L3r2(r ·Q)− 14

3
L3r2(l · r)(α̂ · r0) (12)

On the other hand, the known exterior field, which comes
from a best fitting of the obtained EEG measurements, has
the following Taylor expansion in Cartesian form

u+(r) =
1

4πσ

[
A1x1 +A2x2 +A3x3

r3

+
B1x

2
1 +B2x

2
2 +B3x

2
3

r5

+
B12x1x2 +B23x2x3 +B31x3x1

r5

+
Γ1x

3
1 + Γ2x

3
2 + Γ3x

3
3

r7

+
Γ12x

2
1x2 + Γ21x

2
2x1 + Γ23x

2
2x3

r7

+
Γ32x

2
3x2 + Γ31x

2
3x1 + Γ13x

2
1x3

r7

+
Γ123x1x2x3

r7

]
+O

(
1

r5

)
, r →∞ (13)

where the coefficients A, Band Γ are
known expressions of the 13 variables
Q1, Q2, Q3, l1, l2, l3, r01, r02, r03, α̂1, α̂2, α̂3, and L.
Since the function u+ is harmonic the coefficients are
connected via the relations

B1 +B2 +B3 = 0 (14)
3Γ1 + Γ21 + Γ31 = 0 (15)
Γ12 + 3Γ2 + Γ32 = 0 (16)
Γ13 + Γ23 + 3Γ3 = 0 (17)

Hence, among the 19 coefficients appearing in the expres-
sions (13) only 15 are linearly independent, and since the
seeking numbers are only 13 it follows that, at least in
principle, the information carried by the terms n = 1, 2, 3
of the expansion (6) is enough to identify the source in its
localized form (8). So, what we actually need to do, in order
to solve the inverse problem and identify the source, is to
utilize the algebraic relations which associate the coefficients
in (9) with the corresponding known expressions that these
coefficients have to have from the relations (10)-(12) and to
solve the resulting nonlinear algebraic system. Nevertheless,
this program leads to a system which either is extremely
difficult, or it is impossible, to be solved analytically. How-
ever, we can consider a special, but not trivial case, which
does preserve the essential straucture of the problem and at
the same time it is analytically tractable. In fact, we assume
that the point r0 is located on the x3–axis, and that the line
segment is oriented along the x1–axis. That is

r0 = (0, 0, r0) and â = (1, 0, 0). (18)

This system is obtained through a series of analytic calcula-
tions and reads as follows:



(A1, A2, A3) = 6L(Q1, Q2, Q3) (19)

B1 = −5

6
A3r0 +

10

3
L3l1 (20)

B2 = −5

6
A3r0 −

5

3
L3l1 (21)

B3 =
5

3
A3r0 −

5

3
L3l1 (22)

B12 = 5L3l2 (23)

B23 =
5

2
A2r0 (24)

B31 =
5

2
A1r0 + 5L3l3 (25)

Γ1 =
7

9
L2A1 −

14

3
L3l3r0 −

7

6
A1r

2
0 (26)

Γ2 = − 7

18
L2A2 −

7

6
A2r

2
0 (27)

Γ3 = − 7

18
L2A3 −

14

3
L3l1r0 +

7

3
A3r

2
0 (28)

Γ12 =
14

9
L2A2 −

7

6
A2r

2
0 (29)

Γ21 = −7

6
L2A1 −

14

3
L3l3r0 −

7

6
A1r

2
0 (30)

Γ13 =
14

9
L2A3 +

56

3
L3l1r0 −

7

2
A3r

2
0 (31)

Γ31 = −7

6
L2A1 +

56

3
L3l3r0 +

14

3
A1r

2
0 (32)

Γ23 = − 7

18
L2A3 −

14

3
L3l1r0 −

7

2
A3r

2
0 (33)

Γ32 = − 7

18
L2A2 +

14

3
A2r

2
0 (34)

Γ123 =
70

3
L3l2r0. (35)

IV. THE INVERSE PROBLEM

All we have to do now is to elliminate the parameters
l1, l2, l3 between the equations (19)-(35) and then to solve
the reduced system with respect to the seeking quandities

Q1, Q2, Q3, r0, and L. Since we have 19 equations connect-
ing 8 unknowns, the determination of the unknowns can be
done in many different ways. In any case, the final result is
given by

r0 =
2

5

B23

A2
(36)

L =

(
9

14

Γ12

A2
+

3

25

(
B23

A2

)2
)1/2

(37)

Qi =
Ai

6

(
9

14

Γ12

A2
+

3

25

(
B23

A2

)2
)−1/2

,

i = 1, 2, 3. (38)

So, the importance of this example is that it demonstrates
that the support of a localized neuronal current is in fact
identifiable, as long as its dimension is less than three.
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