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Abstract— Electroencephalography (EEG) measures poten-
tial differences on part of the surface of the head. These
measurements are directly connected with activated regions
within the brain, modeled as dipoles, and are accurately
interpreted if originating from a average ellipsoidal conductor
with semi-axes 5.5, 6.5 and 8.5 × 10−2 m. However, the
volume of modern human brains varies significantly depending
on sex and age. These variations in volume could introduce
a source of error affecting the location of the dipole if not
incorporated in existing models. In what follows, an error
estimation is established for EEG readings in the case where
the average ellipsoidal brain is replaced by an ellipsoid with
different volume.

I. INTRODUCTION

The imaging techniques which allow the study of the
electromagnetic brain activity as a real time process are
electroencephalography (EEG) and magnetoencephalography
(MEG). Due to their non-invasiveness, both techniques are
well established and of great medical significance, but rely
on accurate algorithms which must efficiently handle the
corresponding inverse problems. As a rule, analytic inver-
sion algorithms are developed approximating the Head-brain
system as a spherical conductor. The necessary parameter(s)
related to the geometry of the conductor are determined on
the basis of MRI-volumetric studies (see for example [1]-
[5]), almost always providing only statistical mean values.

The volume of modern human brains, however, consid-
erable varies among individuals, ranging between 1.053
×10−3 m3 and 1.499 ×10−3 m3 for males (average: 1.274
×10−3 ± 0.115×10−3 m3) whereas for females the corre-
sponding values are 0.975 ×10−3 m3 and 1.398 ×10−3 m3

(average: 1.131 ×10−3 ±0.099 ×10−3 m3) [1]. Moreover,
because the main effort of scientist and engineers is focused
in developing accurate analytic algorithms the use of the
ellipsoidal geometry is unsurpassed.

In details, as literature review reveals errors and bounds
for EEG data are subjects of great interest for numerous
studies [6]-[10]. Most of publications use other numerical
approximations [7], [9] or spherical geometry for the shpae
of the head. As for the error method used, this could range
from simple mean square calculations [9] in localizing the
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dipole position to complicated Bayesian methods [8]. In
these cases, errors could range from 2 ×10−3 m to 25
×10−3 m [6]-[10] depending on the method. These findings
underline the need for accuracy in EEG data and provide
space for research towards the decrease of errors from EEG
measurements.

An important question regarding the modalities of Electro-
and Magnetoencephalography is to establish how sensitive
standard inversion algorithms are in the case where measure-
ments are wrongfully interpreted by arriving from an average
ellipsoidal brain. The present analysis consists the first step
towards this direction.

The article is organized as follows. An elementary intro-
duction to the theory of ellipsoidal harmonics as well as
to the forward EEG problem are provided in the sequel.
These notions are then implemented to compute the errors
and bounds associated with measurements originating from
a ellipsoidal volume conductor different from the so-called
reference ellipsoid.

II. MATHEMATICAL FORMULATION

A. The Ellipsoidal Coordinate System.

In the ellipsoidal coordinate system (ρ, µ, ν) each point is
specified by the intersection of three non-degenerate second-
degree surfaces, corresponding to an ellipsoid, a hyperboloid
of one sheet as well as a hyperboloid of two sheets. The
family of confocal ellipsoids are represented via

x21
ρ2

+
x22

ρ2 − h23
+

x23
ρ2 − h22

= 1, ρ2 ∈ (h22,+∞) (1)

whereas the remaining two surfaces are described by equa-
tions identical to (1) interchanging ρ by the variables µ and
ν, respectively, defined on the intervals µ2 ∈ (h23, h

2
2) and

ν2 ∈ (0, h23). The constants

h21 = a22 − a23, h22 = a21 − a23, h23 = a21 − a22
are the squares of the semi-focal distances and ai, i = 1, 2, 3
with 0 < a3 < a2 < a1 < +∞ fixed parameters determining
the reference semi-axes.

Further, the ellipsoidal coordinates of every point are
connected to the Cartesian by the following relations

x1 =
ρµ ν

h2 h3
, (2)

x2 =

√
ρ2 − h23

√
µ2 − h23

√
h23 − ν2

h1 h3
, (3)

x3 =

√
ρ2 − h22

√
h22 − µ2

√
h22 − ν2

h1 h2
, (4)
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provided that 0 ≤ ν2 ≤ h23 ≤ µ2 ≤ h22 ≤ ρ2.
Equation (1) as well as the two equations arising inter-

changing ρ by the variables µ and ν, respectively, demon-
strate the unique character of every direction in the ellip-
soidal system and in order to establish the variations in an-
gular dependence, a reference ellipsoid has to be introduced,
a direct analogy to the unit sphere.

The reference ellipsoid Eref is defined via (1) replacing ρ
by a1, i.e.

Eref :
x21
a21

+
x22
a22

+
x23
a23

= 1. (5)

We emphasize, that in order to solve boundary value
problems in the ellipsoidal coordinate system it is essential to
adopt an ellipsoid in such a way as to fit the actual boundary
by choosing a particular value of ρ. This is secured if we
use the boundary of our domain to be the reference ellipsoid
(5) and construct the ellipsoidal system that is based on it.

In closing this subsection, we note that the ellipsoidal
coordinate system, by its very nature, is demanding, con-
cealing numerous difficulties. Therefore, the authors strive
to provide all necessary details regarding the development.
However, due to the limited space this is beyond the bounds
of possibility and as a result the interested reader is referred
to [4].

B. The Forward EEG Problem.
Activation of a localized region in the brain triggers a

primary neuronal current Jp(r) leading to a measurable
electric potential on the boundary.

Consider a homogeneous ellipsoidal conductor with semi-
axes ai, i = 1, 2, 3 and conductivity σ, which takes the
place of the reference ellipsoid for our ellipsoidal coordinate
system.

In the case where the neuronal current is represented by a
single equivalent dipole at the point r0 = (ρ0, µ0, ν0) with
moment Q, then Jp(r) = Q δ(r− r0), δ denoting the Dirac
measure.

The interior electric potential u−(ρ, µ, ν) is obtained by
solving the following Neumann problem

∆u−(ρ, µ, ν) =
1

σ
Q · ∇δ(r− r0), h2 ≤ ρ < a1,

∂

∂ρ
u−(ρ, µ, ν) = 0, ρ = a1,

whereas the corresponding electric potential u+(ρ, µ, ν) out-
side the head is derived by the Dirichlet problem

∆u+(ρ, µ, ν) = 0, ρ > a1,

u+(ρ, µ, ν) = u−(ρ, µ, ν), ρ = a1,

u+(ρ, µ, ν) = O
(

1

r2

)
, r→∞.

After tedious but straightforward calculations (details regard-
ing the derivation of the formulas can be found in [3]), we
find

u±(r) =
1

σ
lim
N→∞

N∑
n=1

u±n (r), (6)

where the partial sums u±n (r) are defined as

u−n (ρ, µ, ν) =

2n+1∑
m=1

Q · ∇r0 Emn (r0)

γmn

(
Imn (ρ)− Imn (a1)

+
1

a2 a3Emn (a1) d
dρE

m
n (a1)

)
Emn (ρ, µ, ν),

and

u+n (ρ, µ, ν) =
1

a2 a3

2n+1∑
m=1

Q · ∇r0 Emn (r0)

γmn Fmn (a1) d
dρE

m
n (a1)

Fmn (ρ, µ, ν),

respectively. On the other hand, on the boundary of the
reference ellipsoid Eref we have

un(a1, µ, ν) =
1

a2 a3

2n+1∑
m=1

Q · ∇r0 Emn (r0)

γmn

(
d
dρE

m
n (a1)

) Smn (µ, ν).

(7)

Here, Emn denote the Lamé functions of the first kind,
divided into four different classes, known as K, L, M and N.
The structure of each class is as following

K(x) = xn + c1 x
n−2 + c2 x

n−4 + . . . ,

L(x) =
√
|x2 − h23|

(
xn−1 + d1 x

n−3 + . . .
)
,

M(x) =
√
|x2 − h22|

(
xn−1 + f1 x

n−3 + . . .
)
,

N(x) =
√
|x2 − h23|

√
|x2 − h22|

(
xn−2 + g1 x

n−4 + . . .
)
,

x standing for either variable ρ, µ, ν. The corresponding
Lamé functions of the second kind Fmn (ρ) are

Fmn (ρ) = (2n+ 1)Emn (ρ) Imn (ρ),

Imn (ρ) =

∫ ∞
ρ

dt

(Emn (t))
2
√
t2 − h23

√
t2 − h22

, ρ ≥ h2

where Imn is the elliptic integral.
On the other hand, the product of two Lamé functions

belonging to the same class define the surface ellipsoidal
harmonics Smn , i.e.

Smn (µ, ν) = Emn (µ)Emn (ν),

whereas

Emn (ρ, µ, ν) = Emn (ρ)Smn (µ, ν) (8)

designate the interior ellipsoidal harmonics (ellipsoidal har-
monics of the first kind). Similar, the exterior ellipsoidal
harmonics are

Fmn (ρ, µ, ν) = (2n+ 1)Emn (ρ, µ, ν) Imn (ρ).

Last but not least, γmn indicate the normalization constants,
being proportional to the number π, given by the formula

γmn =

∮
Sa1

(Smn (µ, ν))
2

dΩ(µ, ν)

for every n = 0, 1, 2, . . . and m = 1, 2, . . . , 2n + 1 where
the ellipsoidal solid angle element dΩ(µ, ν) is independent
of the ellipsoidal surface specified by the variable ρ.



C. Approximation Error and Bounds

Let us introduce a second ellipsoid E2 which is completely
determined by its semi-axes āi, i = 1, 2, 3 defined by the
equation

E2 :
x21
ā21

+
x22
ā22

+
x23
ā23

= 1. (9)

Further, allow E2 to be confocal to the reference ellipsoid
Eref defined by (5), therefore differing only by a parameter ε
such that ρ = a1 + ε.

With that understanding, equation (9) becomes

E2 :
x21

(a1 + ε)2
+

x22
(a1 + ε)2 − h23

+
x23

(a1 + ε)2 − h22
= 1.

(10)

Comparing relations (5) and (10) implies the following
formulae connecting the semi-axes ai and āi, i = 1, 2, 3

ā1 = a1 + ε, (11)

ā2 =
√

(a1 + ε)2 − h23, (12)

ā3 =
√

(a1 + ε)2 − h22. (13)

The notion of confocal ellipsoids permits application of
relation (7) on the boundary of E2 as well by simply
substituting ai, i = 1, 2, 3 by their over lined counterparts.
Subtracting in the sequel these electric potentials and taken
into consideration only first degree terms, gives

u1(a1, µ, ν)− u1(ā1, µ, ν) =
1

σ

3∑
m=1

Q · ∇r0 Em1 (r0)

γm1

× Sm1 (µ, ν)

 1

a2 a3

(
d
dρE

m
1 (a1)

) − 1

ā2 ā3

(
d
dρE

m
1 (ā1)

)
 .

(14)

Note that,
1

a2 a3

(
d
dρE

m
1 (a1)

) > 1

ā2 ā3

(
d
dρE

m
1 (ā1)

)
if ε is positive or, if ε < 0

1

a2 a3

(
d
dρE

m
1 (a1)

) < 1

ā2 ā3

(
d
dρE

m
1 (ā1)

) .
It is of interest to write above expression in terms of
Cartesian coordinates. To this end, we first calculate the
source dependent directional derivative Q · ∇r0 on the
eigenfunctions Em1 (r0). The Lamé functions for n = 1 are

Em1 (x) =
√
|x2 − (a21 − a2m)|, m = 1, 2, 3 (15)

where again x stands for either variable ρ, µ, ν, and the
following relation is easily verified

Q · ∇r0 Em1 (r0)

γm1
=

3

4π

1

h1 h2 h3
hmQm, m = 1, 2, 3

(16)

provided that

γm1 =
4π

3

(
h1 h2 h3
hm

)2

.

We note that relation (16) is independent of the dipoles
location.

Furthermore,

Em1 (a1) = am, m = 1, 2, 3,

d

dρ
Em1 (a1) =

a1
am

, m = 1, 2, 3,

and

Sm1 (µ, ν) =
h1 h2 h3
am hm

xm, m = 1, 2, 3.

Next, one has to combine (15) with (11)-(13) and expand the
resulting expressions as Taylor series regarding the parameter
ε. Putting everything back into (14) gives

u1(a1, µ, ν)− u1(ā1, µ, ν) = ε
a1
σ Vref

×
3∑

m=1

Qm xm

(
1

a21
+

1

a22
+

1

a23
− 1

a2m

)
, (17)

where
Vref =

4π

3
a1 a3 a3

is the volume of the reference ellipsoid.
The relative error of the latter is easily computed bearing

in mind that

u1(a1, µ, ν) =
1

σ Vref

3∑
m=1

xmQm.

Moreover, without loss of generality we consider Qm = Q
whereas for the reference ellipsoid Eref we have |xm| ≤
am, m = 1, 2, 3, leading to the following local bound

|u1(a1, µ, ν)− u1(ā1, µ, ν)|
|u1(a1, µ, ν)|

≤ |ε|
||x1| − |x2| − |x3||

× a1
3∑

m=1

am

(
1

a21
+

1

a22
+

1

a23
− 1

a2m

)
(18)

subject to

x21
a21

+
x22
a22

+
x23
a23

= 1. (19)

III. NUMERICAL EXAMPLES

The average, minimum and maximum volume of the
human brain is Vaver = 1.272 × 10−3 m3, Vmim =
1.053 × 10−3 m3 and Vmax = 1.5 × 10−3 m3, respectively,
corresponding to semi-axes (a1, a2, a3) = (8.5, 6.5, 5.5)
×10−2 m, (ā1,min, ā2,min, ā3,min) = (7.5, 6.7, 5) ×10−2 m
and (ā1,max, ā2,max, ā3,max) = (9, 6.5, 6) ×10−2 m.

Remark 3.1: Although, by implementing aforementioned
values relation (11) supplies an interval in which the parame-
ter ε lives, namely ε ∈ [−1, 0.5] ×10−2 m, great care must be
taken by using them. We recall that in deriving relation (17)



TABLE I
MAXIMUM PERCENTAGE OF RELATIVE LOCAL ERROR. THE PARAMETER

ε IS SET TO 0.1 ×10−2 M

x1 x2 x3 error
×10−2 m ×10−2 m ×10−2 m %

-8.5 -5.0 4.6 42
-8.5 -3.5 30 34
-8.5 -1.5 1.3 12
-2.5 6.5 1.6 12
-3.5 6.5 2.3 13
-5.5 6.5 3.6 15
0.0 -1.5 5.3 10
0.0 -2.5 5 9
0.0 -3.5 4.6 9
6.0 0.0 3.9 33
7.0 0.0 3.1 18

we extensively used Taylors expansion. Obviously, (17) and
formulas based on it are only valid in the common region of
convergence, computed with the aid of the corresponding nth
term of each series. There exactly lies the difficulty. These
terms are almost impossible to obtain. However, relation (17)
remains accurate in a small region around zero.

The relative error bounds computed via (18) for various
points on the surface of the reference ellipsoid for fixed
parameter ε = 0.1 ×10−2 m are shown in Table I.

IV. CONCLUSIONS AND FUTURE WORKS

Despite the noticeable diversity of the size of human
brains, we insist on treating them as average when it comes
to measure and analyse them. In other words, inversion
algorithms base their calculations on parameters tailored to
an equivalent sphere or rarely to an ellipsoid.

A first step towards the answer has been provided in the
framework of the present article. Using only first degree
terms the maximum error, strongly depending on the mea-
surement site, has been evaluated (see Table I). However,
the indicated terms are inadequate for two major reasons: (a)
The action of the source dependent operator Q · ∇r0 on the
eigenfunctions Emn (r0) (16) does not incorporate the location
of the source. (b) The expression of the matching magnetic
field involves no terms of the first degree. The latter implies
that the magnetic potential measured a few centimeters away
from the surface of the head is also zero.

Obviously, future work must include higher degree terms.
Although this sounds trivial if working in the spherical
coordinate system, in the ellipsoidal geometry this is a
deficiency associated with the lack of general formulas for
Lamé functions and related Ellipsoidal harmonics [11].
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