
The Influence of Surface Deformations on Electroencephalographic
Recordings

George Dassios, Michael Doschoris and George Fragoyannis

Abstract— The precise identification of neuronal currents
via Electroencephalographic (EEG) recordings is an important
aspect in clinical practice and strongly depends on the accu-
racy of the corresponding forward problem. In addition, the
precision of the EEG forward model is closely connected to the
existence of a volume conductor model as realistic as possible.
In this paper, the impact of geometric variations of the head
on the measured electric potential has been studied by means
of a homogeneous spherical conductor. In the case where the
activated region is situated in the vicinity of the deformation, the
calculated potential values show a slight increase. On the other
hand, for neuronal currents away from the deformation no
influence upon the surface electric measurements is observed.

I. INTRODUCTION

Reconstruction of cerebral activity via Electroencephalo-
graphic (EEG) and Magnetoencephalographic (MEG)
recordings are established tools in clinical diagnosis and
cognitive research. A requirement in order to investigate
the brains electromagnetic activity is the existence of a
realistic volume conductor model. Typically, the head-brain
system is modeled either as a simple homogeneous sphere
or by a set of spherical shells with varying conductivities,
producing closed form solutions which, as a consequence,
provide insight to the observed phenomena.

However, computer model simulations [1], [2], [3] suggest
that neglecting geometric variations present at the conductors
surface (such as skull thickness, cavities, etc.) strongly influ-
ence the forward EEG problem and therefore the accuracy
of the reconstruction process for the source.

Nonetheless, in order to understand the problem a rigorous
mathematical analysis is needed. The present study consist a
first approach towards this direction. Employing a homoge-
neous spherical conductor the effect of surface deformations
on the forward EEG problem is analyzed.

The article is organized as follows. The first part of
Section 2 provides the necessary mathematical background
for the forward EEG problem. In the second part, employing
standard perturbation techniques, the first order perturbation
of the corresponding Poincaré expansion is explicitly calcu-
lated. Finally, section 3 provides numerical examples.
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II. THE FORWARD EEG PROBLEM.

Activation of a localized region in the brain triggers a
primary neuronal current Jp(r) leading to a measurable
electric potential on the surface of the head.

In the case where the neuronal current is represented by
a single equivalent dipole at the point r0 with moment Q,
then Jp(r) = Q δ(r− r0), δ denoting the Dirac measure.

Approximating the head-brain system by a spherical ho-
mogeneous conductor with radius a and conductivity σ, the
interior electric potential u−(r) solves the following problem

∆u−(r) =
1

σ
Q · ∇δ(r− r0), r < a, (1)

∂

∂r
u−(r) = 0, r = a, (2)

where the operators ∆ and ∇ act on the point of observation
r.

Once the above problem is solved, knowledge of the
solution u−(r) leads to the exterior electric potential u+(r)
satisfying the Dirichlet problem

∆u+(r) = 0, r > a, (3)

u+(r) = u−(r), r = a, (4)

u+(r) = O
(

1

r2

)
, r→∞. (5)

Introducing an auxiliary function υ(r) as

u(r) =
1

σ
Q · ∇r0 υ(r) (6)

and by the fact that ∇rδ(r − r0) = −∇r0δ(r − r0), above
BVP’s simplify as follows

∆ υ−(r) = −δ(r− r0), r < a, (7)
∂

∂r
υ−(r) = 0, r = a (8)

as well as

∆ υ+(r) = 0, r > a, (9)
υ+(r) = υ−(r), r = a, (10)

υ+(r) = O
(

1

r2

)
, r→∞. (11)

The solution regarding (7) and (8) is obtained by a straight-
forward expansion in spherical harmonics, i.e.

υ−(r) =
1

4π

∞∑
n=1

(
1

rn+1
+
n+ 1

n

rn

a2n+1

)
rn0 Pn(r̂ · r̂0).

(12)
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It is possible to express above relation in closed form (see
[4] for details) as

υ−(r) =
1

4π

(
1

P
+
a

r

1

R
− 1

a
ln
rR+ r ·R

2a2

)
(13)

where

P = r− r0, R =
a2

r2
r− r0. (14)

On the other hand, the corresponding boundary values are
easily evaluated to be

υ(ar̂) =

∞∑
n=1

n∑
m=−n

1

n

rn0
an+1

Ȳm
n (r̂0)Ym

n (r̂) (15)

=
1

4π

(
2

|ar̂− r0|
− 1

a
ln
|ar̂− r0|+ r̂ · (ar̂− r0)

2a

)
.

(16)

where an overline denotes complex conjugation and the
addition formula

Pn(r̂ · r̂0) =
4π

2n+ 1

n∑
m=−n

Ȳm
n (r̂0)Ym

n (r̂) (17)

has been taken into account as well.

A. Effect of a Perturbed Surface on the Forward EEG
Problem

Assume in the sequel a perturbed homogeneous spherical
conductor, depicted in Fig. 1, each point belonging to the
boundary given by the relation

r(θ, φ; ε) = a+ ε f(θ, φ) (18)

where ε is the so-called perturbation parameter and f(θ, φ)
is a smooth enough function.

Apparently, if ε = 0, the unperturbed case described ear-
lier is recovered. And since the unperturbed case corresponds
to ε = 0, we seek a solution in the linear regime of the form

υ−(r; ε) = υ−0 (r) + ε υ−1 (r) + · · · . (19)

The Neumann condition n̂ · ∇υ(r) = 0, where n̂ is the
unit normal on the perturbed boundary, becomes

r2
∂υ−

∂r
− ∂r

∂θ

∂υ−

∂θ
− 1

sin2 θ

∂r

∂φ

∂υ−

∂φ
= 0 (20)

a

r0

Q

r

Fig. 1. A locally deformed homogeneous sphere of radius r(θ, φ; ε). The
declination or elevation of the geometrical perturbation depends upon the
parameter ε. For non-deformed regions ε = 0 and r(θ, φ; 0) = a. The
dipole sources are always located inside the perturbed conductor.

which in view of (18), (19) and collecting coefficients
supplies the necessary boundary value problem for the first
correction υ−1 (r), as

∆ υ−1 (r) = 0, r < a, (21)

∂υ−1
∂r

=
1

a2

(
∂f

∂θ

∂υ−0
∂θ

+
1

sin2 θ

∂f

∂φ

∂υ−0
∂φ

)
, r = a (22)

where υ−0 is given by (15).
Expanding υ−1 (r) in terms of spherical harmonics and with

the aid of (15) the boundary condition reads
∞∑
p=1

p∑
q=−p

pBqp ap+1 rp0 Ŷq
p(r̄0) Yq

p(r̂) =
1

sin θ

∂f

∂θ

×
∞∑
n=1

n∑
m=−n

rn0 Ȳm
n (r̂0)

nan+1

[
(2n+ 1)jn+1,m Ym

n+1(r̂)−Ym
n (r̂)

]

+ ı̇
1

sin2 θ

∂f

∂φ

∞∑
n=1

n∑
m=−n

m

n

rn0 Ȳm
n (r̂0)

an+1
Ym
n (r̂), (23)

provided that

sin θ
∂

∂θ
Ym
n (r̂) = (2n+ 1)jn+1,m Ym

n+1(r̂)−Ym
n (r̂) (24)

where

jn,m =

√
n2 −m2

4n2 − 1
(25)

and
∂

∂φ
Ym
n (r̂) = ı̇mYm

n (r̂). (26)

In what follows, replace
1

sin θ

∂f

∂θ
,

1

sin2 θ

∂f

∂φ

by an expansion in terms of spherical harmonics and compute
the emerging products of double series. Utilizing orthogonal-
ity the coefficients Bqp are given as

Bqp =
(−1)q

2pa

√
2p+ 1

π

{ ∞∑
n=1

n∑
k=1

k∑
m=−k

n−k+1∑
`=−n+k−1

rk0 Ȳm
k (r̂0)

kak+1

×
√

((k + 1)2 −m2)(2k + 1)(2n− 2k + 3)β`n−k+1

×
(
k + 1 n− k + 1 p

0 0 0

)(
k + 1 n− k + 1 p
m ` −q

)
−
∞∑
n=1

n∑
k=1

k∑
m=−k

n−k+1∑
`=−n+k−1

rk0 Ȳm
k (r̂0)

kak+1

×
√

(2k + 1)(2n− 2k + 3)(β`n−k+1 − ı̇mγ`n−k+1)

×
(
k n− k + 1 p
0 0 0

)(
k n− k + 1 p
m ` −q

)}
(27)

where

β`n−k+1 =

∫ 2π

0

∫ π

0

∂f

∂θ
Ȳ`
n−k+1(r̂)dθdφ, (28)

γ`n−k+1 =

∫ 2π

0

∫ π

0

1

sin θ

∂f

∂φ
Ȳ`
n−k+1(r̂)dθdφ. (29)



The quantity (
j1 j2 j3
m1 m2 m3

)
is the so-called 3j symbol [5] satisfying the triangle condi-
tion as well as m1 +m2 +m3 = 0.

The electric potential on the perturbed surface is then

υ(ar̂; ε) ∼= υ0(ar̂) + ε υ1(ar̂) (30)

where υ0(ar̂) is given by (16), whereas

υ1(ar̂) =

∞∑
p=1

p∑
q=−p

Bqp Yq
p(r̂) (31)

with Bqp given by (27).

III. RESULTS

The spherical head model consist of four compartments,
namely: (a) The facial region (indicated with purple color in
Fig. 2 and 4) located between θ ∈ [ 3π8 , π] and φ ∈ [ 3π2 ,

π
2 ],

(b) the back of the head located between θ ∈ [ 3π8 , π] and
φ ∈ [π2 ,

3π
2 ], (c) the top of the head located between θ ∈

[0, 3π8 ] and φ ∈ [0, 2π] as well as, (d) the perturbed surfaces
(indicated with orange color in Fig. 2 and Fig. 4) which are
reconstructed by means of the function

f(θ, φ) = (sin kθ)n (cos `θ)m . (32)

A. Local surface distortions

For the first example, we consider a closed head injury in
form of a blow to the head right above the facial region,
depicted in Fig. 2, represented by (32) with parameters
(k, `, n,m) = (8, 3, 2, 3) defined in the intervals θ ∈ [π4 ,

3π
8 ]

and φ ∈ [ 3π2 ,
11π
6 ]. The maximum depth of the deformed

area, stationed central, is considered small corresponding to
ε = 6 × 10−3 m. We note, that these kind of injuries are
commonly associated with home and occupational accidents
as well as motor vehicle traffic collisions.

Fig. 2. A non-penetrating head injury in form of a sunken area (orange)
situated at the fore part of the head, just above the facial region (purple).
The red, green and blue arrows represent the x, y and z axis, respectively.

Fig. 3. Simulated EEG recordings originating from a spherical homoge-
neous conductor without (above) and including (below) deformations. The
radius of the sphere model is a = 0.071 m whereas the conductivity equals
σ = 0.285 S/m. The location of the dipole is r0 = (0.06m, 5π

16
, 5π

3
) with

moment Q = (10−5, 10−5, 10−5) Cm. This order of magnitude ensures
that the measured potential is in mV per unit length [6].

In Fig. 3, the electric surface potentials generated by a
dipole positioned exactly under the injury, are compared for
the spherical homogeneous conductor without any deforma-
tion present (above) as well as the perturbed case (below).
As expected, for active regions away from the distortion site
potential recordings are not affected. However, for operating
dipoles in the vicinity of the trauma (middle section of
the right part of Fig. 3) modest differences for the entire
measurements are observed. These differences intensify with
the severity of the injury (shape and depth).

B. Deformation of the upper part of the head

The second example is concerned with the case where a
large area, namely the upper part of the head, is deformed.
This is an important case since: (a) it consist the main
measurement site for EEG recordings and (b) human head
shapes vary considerable among individuals.

The perturbed surface, depicted in Fig. 4, is constructed
via (32) with parameters (k, `, n,m) = (8, 2, 1, 1) defined in
the intervals θ ∈ [0, 3π8 ] and φ ∈ (0, 2π]. The electric surface
potentials for the unperturbed conductor (above) along with
the perturbed case (below) are displayed in Fig. 5. The
moment of the dipole source is considered the same as
in the previous example sited at r0 = (0.065 m, 5π16 ,

3π
2 ).

Differences in the magnitude of the potential between 1
mV and 3 mV are observed affecting the entire spectrum
of recordings. However, for deeper sources the influence of
the shape of the (upper) head nearly vanishes.



Fig. 4. A general deformation of the upper part of the human cranium.
The red, green and blue arrows represent the x, y and z axis, respectively.

IV. CONCLUSIONS

We presented a first-order perturbation analysis in order
to analyze the influence of geometric variations present on
the conductors surface on the forward EEG problem. Such
variations could represent the varying thickness of the skull,
non-penetrating injuries associated with accidents or errors
made in the process of building the head model. The results
show that in the presence of geometric variations and for

Fig. 5. The electric surface potential due to a dipole located at r0 =
(0.065m, 5π

16
, 3π

2
) with moment Q = (10−5, 10−5, 10−5) Cm. The

perturbation parameter is set to ε = 5 × 10−3 m corresponding to a
maximum-minimum departure from the unperturbed surface of ±5×10−3

m. The first graph displays the potential in the unperturbed case whereas
the perturbed is shown in the second graph. The radius and conductivity
take the same values given in Fig. 3.

dipole sources near the brain surface, a slight divergences
in the measured potentials up to 3 mV can be observed.
These, although small differences, will have an impact on
the inverse EEG problem, i.e. estimating the source position
and strength.
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