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Abstract— Wireless capsule endoscopy (WCE) is commonly used for
noninvasive gastrointestinal tract evaluation, including the identification
of polyps. In this paper, a new multimodal embeddable method for
polyp detection and classification in wireless capsule endoscopic images
was developed and tested. The multimodal wireless capsule used both
2D and 3D data to identify possible polyps and to deliver cancerous
information of the polyps based on 3D geometric features. Possible
polyps within the image (2D) were extracted using simple geometric
shape features and, in a second step, the candidate regions of interest
(ROI) were evaluated with a boosting-based method using textural
features. Once the 2D identification of polyps has been performed,
the two-class (“malignant” or “begnin”) classification of the polyps
is achieved using the 3D parameters computed from the preselected
ROI using an active stereo vision system. At this stage, a Support
Vector Machine (SVM) classifier is used to proceed to the final
classification and to make possible a pre diagnosis. The new proposed
multimodal approach based on 2D - 3D feature extraction improves
WCE capabilities to identify and classify polyps: The boosting-based
polyp classification demonstrated a sensitivity of 91%, a specificity of
95% and a false detection rate of 4.8% on a database composed of 300
hundred positive examples and 1200 negative ones; Considering the
3D performance, a large scale demonstrator was evaluated and tested
to perform in vitro experiments on an ad hoc polyp database. The
performance of the 3D approach achieved a correct classification rate
(malignant or benin) of approximately 95%.

I. INTRODUCTION

Colorectal cancer (CRC) is the first cause of death by cancer in
developed countries, with an estimated incidence of 728.550 cases
worldwide in 2008, with fatal outcome in 43% of cases. Overall,
CRC is the third more frequent cancer after lung cancer and breast
cancer [1]. Prevention of CRC by detection and removal of pre-
neoplastic lesions (colorectal adenomas) is therefore of paramount
importance and has become a worldwide public health priority. The
risk of transformation of an adenoma into cancer depends on various
features such as size and tissue architecture (villous type, degree of
dysplasia). Thus, it is considered that adenoma represents a critical
risk of degeneration when at least one of three features appears:
its size exceeds ten millimeters, villous occupies over 25% of its
surface and / or it contains an area of high-grade dysplasia.

Currently, colonoscopy is the “gold standard” technique for diag-
nosis of colorectal adenoma and cancer. Because, videocolonoscopy
is performed under general anesthesia, mini-invasive techniques
such as computed-tomography-based colonography and wireless
capsule endoscopy (WCE) have been developed for patients with
contra-indication or low compliance to sedation drugs. WCE takes
form of a pill equipped with a camera, two batteries, and a RF
(radiofrequency) transmitter, that enables the off-line identification
of gastrointestinal abnormalities such as ulcers, blood and of course
polyps [2]. Many fabricants such as Given Imaging, IntroMedic, and
Olympus [3] have developed a variety of capsules for the complete
examination of the gastrointestinal tract with the same clinical
workflow: After ingestion of the capsule, more than 50,000 images

are captured along the digestive tract, each of them are wirelessly
transmitted to a wearable receiver and finally, saved for a postponed
physician’s reading. The off-line image processing enables the
identification of gastrointestinal abnormalities like the aforemen-
tioned polyps and adenoma. However, the complete analysis of
the 50,000+ images is time-consuming for physicians, and even
for experienced ones, WCE diagnoses are sometimes challenging.
Finally, the transmission of the 50,000+ images, that represents 80%
of the overall energy consumption of the embedded batteries, limits
to 8 hours the autonomy of the classic WCE, whereas 12 hours are
necessary to scan the complete intestinal tract. In the context of
early diagnosis of colorectal adenoma and cancer, the challenge of
“Cyclope” project is to propose a new generation of WCE (the
so-called Cyclope-WCE) that will permit an in situ detection of
the polyps and, consequently, to only emit the images which are
important for the final diagnosis. In this article, we propose a new
multimodal approach based on 2D and 3D feature extractions from
images acquired by a new generation of WCE. While the 2D allows
to identify possible polyps, the 3D information extracted on the 2D
ROI produces a classification based on some geometrical parameters
usually used in clinical routine. The remainder of this paper is
as follows: After a general presentation of the proposed hardware
structure of the multimodal WCE, a focus is given on the automatic
detection of the polyps considering first characteristics extracted
only from the 2D images provided by the camera within the WCE.
Thus, we presented the method used to classify the polyps into two
categories (malignant or not) by exploiting the 3D characteristics
from the active stereovision within the capsule itself.

II. PROBLEM STATEMENT AND RELATED WORK

Several previous references have considered the detection of
intestinal polyps in videocolonoscopy images in the last few years
([4], [5], [6], [7], [8] among recent ones). They are mainly divided
into two categories: those based on geometric features of the polyps
(size and shape) and those based on textural features.

We focused here on four of the aforementionned contributions: In
[5], Bernal et al. authors propose a study made on videoendoscopy
images. They developed a region descriptor based on the depth
of valleys (SA-DOVA). Resulting algorithm, divided into several
steps, including region segmentation, region description and region
classification, is characterized by promising detection performance
(see Tab. I).

In [6], Figueiredo et al. assume that polyps show up as protru-
sions that can be detected using the local curvature of the image.
Consequently, a method based on the mean and geometric curvature
of the WCE image is proposed. The main drawback of the proposed
approach is the strong dependance on the protrusion measure of the
polyp to identify potential candidates. The consequence is that if
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a polyp is not protruding “enough” from the surrounding mucosal
folds, it may be missed.

In [7], Karargyris and Bourbakis propose an algorithm for WCE
images mainly based on Log Gabor filters and Susan edge detector.
Based on the geometric information of the resulting detected ROI, a
level-set segmentation is then initialized for an accurate delineation
of the polyps. On the considered WCE image database (10 polyps
and 40 non-polyps), the method gives satisfying results but authors
highlight that the taking into account of texture or color-based fea-
tures within the detection/classification scheme would significantly
increase related performance.

Finally, Kodogioannis and Boulougoura [8] propose a texture-
based approach. Authors introduce new texture-based features com-
puted from the chromatic and achromatic spectra of the Region
of Interest (ROI) that may contain a polyp. For classification, a
neurofuzzy scheme is proposed. Main result is that the textural
information is of first importance for the discrimination between
polyps and non-polyps.

Table I summarizes the main principle and the obtained perfor-
mance of these four main contributions.

All these methods are designed for an offline 2D image pro-
cessing and does not integrate malignant or benin classification
capabilities. Nevertheless, during a usual exam, the movement of
the WCE can be heratic and the images are acquired at a constant
sampling frequencies (0.25HZ, 4Hz and 32Hz) depending on the
localization of the WCE (esophagus, small bowel or colon) and are
then transmitted to an external recorder via wireless communication.
Consequently, several thousands of photos are transmitted without
specially pertinent informations which on the one hand, is time
consuming for the physician when he analyzes the overall video
and, on the other hand, reduces the autonomy of the WCE.

III. MULTIMODAL WCE

The approach presented in this paper suggests a new approach
to overcome some of WCE drawbacks by moving towards an
intelligent multimodal wireless capsule endoscopy (the Cyclope-
WCE). The strategy used here is based on multispectral acquisition
and machine learning techniques to perform real-time identification
and classification. Cyclope-WCE has the ability to acquire both
3D data and color texture of the scene (2D) using two spectral
bands (visible and infrared). To take advantage of these imaging
capabilities, we proposed here, firstly to identify the polyps (ROI)
using extraction of the features from the texture (2D) that are
then fed to a boosting-based learning algorithm and secondly,
to retrieve the 3D information of the preclassified ROI to make
a classification of the polyps using a two-classes-SVM strategy
(malignant (adenoma) or benin (hyperplasia)).

Our enhanced strategy is based on a pre-diagnosis performed in
situ: Only identified polyps are then transmitted to the recorder.
This strategy should increase the autonomy of the capsule by
reducing energy consumption during transmission, which represents
the largest portion of the energy consumed by a wireless sensor [9].

The detailed technical description of the 3D imaging capabilities
of Cyclope-WCE is beyond the scope of this article, although the
reader can refer to [10], [11] and [12] for a more detailed description
of the calibration technique and reconstruction process based on
triangulation and matching. The scope of this paper is to introduce
the strategy we propose to identify and classify a polyp. This
classification ability would moreover reduce the number of images
the clinician had to analyze from thousands to only few hundreds.

Fig. 1. Global scheme of the strategy proposed for the detection of
polyps within WCE with two objectives: (i) to improve WCE with an “in
situ diagosis” capabilty and (ii) to reduce the RF power consumption and
consequently improve the life duration of the embedded-battery

IV. 2D IDENTIFICATION OF POLYPS

A. Method

The proposed approach is inspired from the psychovisual
methodology used by the physician when doing an endoscopic
examination: First, a detection of the Regions of Interests (ROI)
that may contain a polyp is performed using shape and size features
extracted from the image. This first pre-selection allows a first
fast scanning of the image. Once the ROI are detected, a second
analysis, based on texture (homogeneity, granularity, coarseness...)
is achieved. Practically speaking, we propose a global scheme
for the detection/classification of possible polyps divided into two
steps:

1) Considering the geometric step of the proposed approach,
simple image processing tools make possible the detection of
circular/elliptical shape like the Hough transform for instance.

2) The texture-based classification is the main key-point of the
global scheme since the rejection of most of the false positive
preselected ROI have to be performed at this stage before
going for the 3D feature extraction step. To achieve this, we
propose to design an ad hoc classifier based on a boosting-
based learning process using textural features.

The global scheme of this approach is summarized in figure 2.

Fig. 2. Proposed diagram for the detection of polyps within videoendoscopy
images.

“Boosting” is a machine learning algorithm for supervised learn-
ing (see [13] among other publications of the same authors).
It consists of the accumulation and constant learning of weak
classifiers (a weak classifier is considered slightly correlated (a little



Authors Main principle Classification performance Database
Bernal [5] Geometry Sensitivity 89% Specificity 98% 300 videocolonoscopy images containing a

polyp (freely available)
Figueiredo [6] Geometry No indicated performance 17 WCE videos of 100 images each, con-

taining example of polyps (10), flat lesions,
diverticula, bubbles, and trash liquids

Karkargyris [7] Geometry Sensitivity 100% Specificity 67.5% 50 WCE images (10 polyps and 40 non-
polyps)

Kodogiannis [8] Texture Sensitivity 97% Specificity 94% 140 WCE images (70 polyps and 70 non-
polyps)

TABLE I
MAIN CHARACTERISTICS OF THE MOST RELEVANT REFERENCES.

better than chance) with the true classification), that once combined
together generate a strong classifier, well-correlated with the ground
truth provided by the expert. In the framework of our proposed
approach, we use the boosting-based method of [14] set-up in
attentional cascade (Cascade Adaboost). This configuration allows
us to create a strong classifier which performance can be priorly
set-up in order to optimize the sensibility of the classification along
with the specificity.

B. Results

Tests were performed on the database proposed by J. Bernal
from the Universitat Autonoma de Barcelona [5], which consists of
300 videoendoscopy images presenting with one single polyp each,
identified and segmented by a specialist. The data are courtesy made
available by authors. To our knowledge, in the particular framework
of colorectal polyp detections, this is currently the only existing on-
line database with a sufficient amount of examples to be statistically
meaningful. Figure 3 shows some example of polyps extracted from
the database.

Fig. 3. Example of polyps extracted from the database of [5]
.

To build the learning database each image of the main dataset
was sub-divided into five thumbnails by the gastroenterologist: A
first ROI corresponds to the polyp, and the other four to non-polyps
(b-e). The resulting learning/testing database is then composed of
a total of 1500 images, with 300 images of polyps and 1200
images of non-polyps, the labeling being performed,once again, by
a specialist.

To proceed to performance evaluation of the proposed boosting-
based method, three measures are usually considered meaningful
and complementary: the sensitivity, the specificity and the false
positive rate.

For these experiments, the ad hoc generated polyp/non-polyp
database was divided into two subgroups: a first one composed
of 1000 images (200 images of polyps and 800 of non-polyps) for
the learning process and a second group for testing composed of
the remaining 500 images. In order to obtain classification perfor-
mance statistically meaningful, the drawing of the elements of both
learning and testing databases were randomly made, and presented
quantitative results correspond to the average value obtained on 100
different configurations.

In a first experiment, different kinds of methods for classifica-
tion were compared: Learning Vector Quantization technic (LVQ)
[15], classic Adaboost and finally Attentional Boosting (cascade
adaboost). In terms of performance, as long as, contrary to cascade
adaboost, it is not possible to set the obtained performance for
LVQ or classic Adaboost, we privileged the balance between “Sen-
sibility” and “Specificity”. The results of this experimentation are
shown in Table II: the most efficient approach was the Attentional
Boosting.

Type Adaboost Sensitivity Specificity FPR
Real Adaboost 77% 92.5% 7.5%

Attentional 91% 95.2% 4.8%
LVQ classification 92% 86% 14%

[5] 89% 98% 2%

TABLE II
PERFORMANCE COMPARISONS AMONG DIFFERENT TYPES OF

CLASSIFICATION APPROACHES.

As it can be noticed, among the different classification technics
used, Cascade Adaboost provides the best compromise between
“Sensibility” and “Specificity”. If LVQ leads to a good classification
of True Positive examples, the total amount of FPR remains
too important considering the fact that 10% of the polyps are
misclassified.

In a second experiment, only Cascade Adaboost is considered
with a setting of the performance parameters chosen in order to
have a “Sensibility” the closer to 100%, whatever “Specificity” will
be. This scenario fits better the expectations of radiologists who do
not wish to miss possible polyps. Performance are shown in Table
III.

Tab. III shows that a high“Sensibility” is an objective that can
be reached with a cascade adaboost setting of the learning process.
Of course the “FPR” rate increases, but finally not that much
considering the fact that for 100 polyps detected, only 14 more
will be showed as possible candidates to the radiologist.

In figure 4 some examples of detection/classification are shown.
ROI that are skirted by a non-bolded plain rectangle are the ROI



Cascade Adaboost Sensibility Specificity FPR
Mean 99,5% 86.1% 13.9%

Standard deviation 0.00 0.07 0.07

TABLE III
AVERAGE PERFORMANCE OF THE CASCADE ADABOOST LEARNING

PROCESS WITH A “SENSIBILITY” SET TO A MINIMUM OF 99%.

candidate issued from the Hough transform step of the proposed
approach. ROI skirted by a bold plain rectangle are those which are
effectively identified as a polyp after the texture-based classification.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Detection examples

C. Discussion

The overall performance of the proposed 2D approach is in accor-
dance with the most recent literature [5] for instance). Therefore, the
complete developed detection/classification scheme is in accordance
with a hardware implementation (Hough transform [16], boosting
classification [17] and co-occurence matrices [18], [19]). Reader
could refer to [20] in which a complete discussion is proposed on
this particular aspect.

V. 3D CHARACTERIZATION OF POLYPS

A. Method

The method consists in the acquisition of 3D information of the
pre classified ROI that contain a polyp and then, to compute eight

parameters characterizing the shape of the overall 3D scene. A
SVM based strategy is used to classify the 3D objects from this
parameter. As usual WCE have not yet 3D imaging capabilities,
a large scale demonstrator was created on purpose. The image
sequences are captured by an active stereovision sensor created by
a 1/4 color CMOS imager with digital output (356292 array size),
and a structured light generator constituted by an array of 361 laser
beams. The Processing block is constituted by a XUP Virtex-II Pro
Development System Board, and a RF module is used for remote
communication.

B. Dataset

To carry out the set of experiments, we designed and manu-
factured an experimental prototype made of silicone to be used
for the in vitro learning and validation phases of our recognition
system (see 5. The bowel polyps are made of silicone with a
scale factor of 2. Polyps are fixed on the internal wall of the
intestine, which is simulated by a tube in silicone with also a
scale factor of 2 compared to classic size. The database consists
of 185 models, 67 classified as adenomas (malignant), and others
as hyperplasias (benin). Note that the classification was performed
under supervision of a gastroenterologist and adhered to the well-
known Milan criteria. Each resulting dataset element consisted of
a cloud of N points in space defined by their Cartesian coordinates
(X, Y, Z) in the real world. We have separated the dataset into
two parts: 60% (111 models) of data is considered to be unknown
and is reserved for testing, whereas the rest of the data is used for
training.

Fig. 5. Silicone model of hyperplasias (above) adenomas (below)

C. Feature extraction

The success of a pattern recognition problem is closely related
to the quality of data and variables that characterize the pattern.
The presence of redundant or noisy variables makes the learning
process more difficult. The set of patterns obtained by our active-
stereo matching technique is a cloud of points from the surface of
polyp models defined by their 3D coordinates. Until now, these
data have been the simplest available features that describe the
surface of studied object. We might wish to favor a small number of
suitable characteristic features in order to discriminate as thoroughly
as possible between different polyps. These extracted features will



be fed into the SVM classifier implemented on the aforementioned
FPGA [21] in order to recognize polyps. We took inspiration from
previous works on color image statistics and texture modeling
[22] and substituted color histogram for third-Dimension histogram
to generate a new set of the most effective statistical features
[23] based on object dimensions and first order moments (Mean
value, Variance, Skewness, Kurtosis, Range, SNR, Area, Width
and Volume). In general, the simple model is easier to understand,
remember and handle [24], especially if there is a need to reduce
resource consumption (storage and computation). This fact leads us
to reduce the dimensionality data using feature selection techniques.
We used the PCA method (Principal Components Analysis) to carry
out the selection phase. However, the complexity of the selection
method will not affect the system performance since this phase
is carried out off-line when configuring the system. The figure 6
presents the result of applying such a method, and shows the degree
of usefulness of each descriptor.

Fig. 6. Degree of usefulness of each descriptor)

D. SVM Classifier

We used a SVM classifier to make the final decision and classify
the captured 3D objects. SVM is a robust classification algorithm
that is used in many medical applications [25], and which can be
used with a small database, as in our case. In this study, we tested
the performance of our system with classic colonoscopy, to decide
whether the captured image is a benin or malignant polyp. The input
of SVM is a set of suitable features extracted from the surface of
each polyp, and the output is a soft label denoting the class this
object belongs to: Adenoma or Hyperplasia. The recognition system
involves several stages of operation to be performed beforehand
during an off-line analysis. These activities include calibration of
stereovision system, feature selection process to reduce dimension-
ality of feature space, training of SVM classifier, model selection
and cross-validation to find out the best parameters of the classifier.

E. Experimental results

As for the boosting learning scheme, once the learning task is
accomplished, it is necessary to evaluate system performance on
another set (the “test set”), independently of the data used for
learning (the “training” set). This step gives information about the
generalizability of the classifier, which is the capacity to correctly
classify new data that has not been used to computethe kernel
parameters. To improve the predictive accuracy of the classifier
in the training stage, we partitioned the set of descriptors into 4
subsets (vectors A, B, C and D) (7). The first vector contains all
the descriptors, while the three other vectors comprise a subset of

descriptors selected according to their degree of discrimination. We
compared the discriminating abilities of different combinations of
attributes by examining the three types of kernel functions: linear,
polynomial, and RBF (8).

Fig. 7. Degree of usefulness of each of the eight features extracted from
the 3D data)

Fig. 8. Experimental results of the classification of polyps by SVM method

F. Discussion

Figure 9 represents the ROC curves for each kernel function ap-
plied to vectors B and C; the ordinate represents the sensitivity and
the abscissa represents the quantity 1-specificity. Pairs (1-specificity,
sensitivity) for each combination are then placed on the curve. The
worst situations are the points closest to the diagonal, obtained with
the linear kernel. On the other hand, the more efficient diagnostic
test corresponds to the curve near the upper left corner. This
situation is achieved with the RBF kernel for two sets. However,
vector (B) represents the highest rate and specificity values, whereas
vector (C) represents the highest sensitivity. For some applications,
the choice of vector (B) is most advantageous. But in our application
we chose the vector (C) as a representative vector, for reasons
relating to sensitivity, which is the most dominant parameter. That
means that some benign polyps will be considered as malignant
and, consequently, removed. The removal of these polyps is less
critical than mis-classifying an adenoma. In the latter case, the
patient would run the risk of developing cancer.

VI. CONCLUSION

In this paper we investigated a novel strategy for the identification
and the classification of polyps for Wireless Capsule Endoscopy
that overcomes some of the significant limitations of current WCE.
The basic and essential task was to integrate algorithms based
on the 2D and 3D information acquired to identify pathologies



Fig. 9. ROC curves

(begin or malignant polyps). Only this information are transmitted
to the data logger in order to (i) increase the autonomy of the
WCE and (ii) to make the overall examination of the images by
the clinician less time consuming. The detection of the possible
polyps is based on texture approach with boosting classifier. The
classification of malignant polyps used the parameters computed
from the 3D ROI using a SVM classifier. The boosting-based
2D detection/classification step is characterized by very satisfying
performance depending on the desired objective as shown in Tabs.
II andIII. The following 3D recognition step showed very promising
results with a sensibility of 99.5% and a sensibility of 95%.

Technically speaking, we have designed a large scale demonstra-
tor including FPGA hardware capabilities to simulate our multi-
stage system for automatic feature extraction and classification of
colon polyps using 3D data obtained from an active stereovision
system. Implementation of the 2D step is currently on the run.

Further work is required to investigate system performance for
a single classifier (boosting) for 2D and 3D information in order
to reduce the overall hardware complexity. Another interesting per-
spective that can improve system performance would be achieved
by incorporating an image compression task into the sensor [26].
Such a functionality could increase system precision and autonomy
while reducing power consumption via a reduction in transmitted
data volume.
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