
  

  

Abstract—The number of arthroplasties is rapidly increasing, 
however most materials used for such applications lack in 
osseointegration. The improvement of the bone/implant 
interface has received great attention for many years, with 
special reference to titanium-based implants. The interface 
between bone and implant has been considered both by physical 
approaches focused on surface topography and by 
chemical/biochemical surface modification by incorporation of 
organic molecules. The work described here is focused on the 
fabrication of implant coatings by layer by layer self-assembly 
of Collagen I (COL) and Hyaluronic acid (HA). The multilayer 
structure has been characterized by SEM and AFM, and the 
Titanium substrates coated with this multilayers have been 
tested with 3T3 cells seeded on Titanium supports. The results 
show that these coatings are promising for the improvement of 
implant osseointegration. This fabrication method is easily 
reproducible, versatile and economic. 

I. INTRODUCTION 

ONSIDERING that in the last decade the incidence of 
arthroplasty has increased not only in elder population 

but also in younger patients [1-3], stable integration of 
orthopedic implants with host bone is crucial to avoid short 
term revisions [4-7]. In order to improve implant 
performances, a new and effective approach consists in 
applying bio-inspired coatings on bone-implant interface to 
enhance bone tissue direct apposition rather than fibrous 
encapsulation [8, 9]. Bioinspired nanocoatings at the 
interface between bone and implant have been found to 
improve implant performances. Collagen and hyaluronan 
have been found to be very promising for the development of 
engineered tissues and biomaterials for tissue engineering 
and regeneration [10-12]. Collagen I is the principal 
structural protein of the organic bone matrix and together 
with growth factors and adhesion proteins it affects cell-
matrix interactions. Hyaluronic acid (HA), another integral 
part of ECM, is a biocompatible and biodegradable linear 
polysaccharide with bacterial inhibitory effect [13-15]. The 
approach described here fabricates implant coatings based 
on  collagen and on hyaluronan in order to improve cell 
adhesion  and growth around the implant, while  decreasing 
bacterial adhesion.  

Polyelectrolytes multilayer coatings have the potential to 

ensure high longevity and excellent biocompatibility, guiding 
osteoblast adhesion, proliferation and differentiation at the 
implant-bone interface [16-19] and reducing the risks of 
bacterial infection, one of the primary cause of mechanical 
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aseptic loosening in situ. The fabrication method used is 
based on sequential addition of oppositely charged 
polyelectrolytes onto a template of any shape. This process is 
called Layer by Layer assembly [20-22]. This technique is 
highly reproducible, economic and the architecture can be 
controlled at nanometer scale by parameters such as pH, 
concentration of polyions solution and ionic strength. This 
technique has been applied to the fabrication of ultra-thin 
films on surfaces of any size and shape, using a wide variety 
of polyelectrolytes [23-32]. 

II.  MATERIALS AND METHODS 

A. Materials 

Cationic type I collagen from calf skin (COL, Sigma 
product number C8919), anionic Hyaluronic acid sodium salt 
from rooster comb (HA, Sigma product number H5388) and 
cationic poly (ethyleneimine) (PEI, average Mw_25.000, 
Aldrich product number 40,872-7) were used for the 
ultrathin film formation. PEI solution was prepared in pure 
water at a concentration of 5 mg/ml. COL was diluted in 
0.1M acetic acid solution at a concentration of 1mg/mL, 
stirred for three hours in a becker using a magnetic bar, then 
diluted again in purified Milli-Q water at a final 
concentration of 0.2 mg/mL. HA was used as received and 
diluted in purified Milli-Q water at a final concentration of 
0.5 mg/mL. All solutions were adjusted to a value of pH 
equal to 4 using HCl 0.1M. Water, used in the experiments 
for the solutions preparation and washing, was purified by 
Milli-Q system and had a resistance of 18.2 MΩcm.  

B. Ultrathin films preparation 

Study of the process of ultrathin films fabrication was 
performed on planar surfaces using a quartz crystal 
microbalance instrument working in liquid environment 
(QCM-Z500, KSV Instruments, Helsinki, Finland). The 
QCM-Z500 instrument measuring principle is based on the 
analysis of the quartz crystal impedance at multiple 
overtones. The obtained parameters are used to calculate the 
properties of adsorbed layers such as mass, density and 
thickness. PEI/(HA/COL)3 multilayers were deposited on 
gold-coated 5 MHz AT-cut quartz crystals. Before 
adsorption, the quartz crystals were cleaned with H2SO4 at 
150°C for 20 min followed by washing in purified Milli-Q 
water. After each use the quartz crystals were renewed. 
Considering that the quartz crystal surface is negatively 
charged, due to partial oxidation in air, a first layer of 
positive PEI was deposited to make easier the following 
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deposition of the structure (HA/COL)n. Specific solutions 
were alternatively introduced into the measurement chamber 
and were left in contact with the quartz crystal for 5 min for 
Milli-Q water (first calibration step), for 10 min for PEI 
adsorption, 20 min for HA deposition and 20 min for COL 
deposition. After each adsorption step, water at pH 4 was 
purred into the chamber and left in contact with the crystal 
for 5 min in order to remove the unabsorbed molecules. The 
data analysis and calculation of thickness were performed 
using the QCM Impedance Analysis software (KSV 
Instruments, version 3.11). 

C. Characterization 

A Scanning Electronic Microscope (SEM, Hitachi S-
2500) at an acceleration voltage of 10kV observed the 
surface morphology of titanium substrates. Being the 
titanium samples conductive, there was no need to perform a 
substrate metallization.  

Silicon samples were air dried at room temperature, and 
then analyzed at the AFM by using a custom build set-up 
driven by R9 advanced controller (RHK technology) in air at 
room temperature. Data acquisitions were carried out in 
tapping mode at scan rates between 0.4 and 0.7 Hz, using 
rectangular Si cantilevers (NCHR, Park Systems) having the 
radius of curvature less than 10 nm and with the nominal 
resonance frequency and force constant of 330 kHz and 42 
N/m, respectively.  

 

D.  Cell Cultures 

3T3 mouse fibroblastic cell line was used instead of 
human cell line to carry out preliminary cell culture studies 
on the titanium samples. An amount of 50.000 cells/100 µL 
medium was homogeneously seeded onto the samples. 
Adhesion and proliferation of cells was evaluated after 1 and 
3 days by using a cell viability test (Presto Blue test by 
Invitrogen). Using a spectrophotometric test at 570 and 600 
nm was measured the absorbance of the supernatant. The 
degree of cell proliferation was expressed as fold difference 
from cells cultured on non functionalized titanium substrates. 
To assess cellular adhesion, morphology and distribution on 
the different samples we used SEM imaging.  
 

III.  RESULTS AND DISCUSSION 

The assembly of the multilayer coating has been firstly 
realized on planar substrates of quartz with the architecture 
PEI(HA/COL)6. The constructive protocol was characterized 
by QCM in order to be optimized. The frequency shift due to 
the adsorption of charged polyelectrolyte onto the quartz 
crystal resonator shows a gradual growth of the film (Fig. 
1.). The frequency gap of each assembly step is used to 
quantify the mass adsorption and thickness for each layer 
thanks to Kanazawa-Gordon equation [33]. 

 
Fig. 1.  Frequency gap for each fabrication step in time 

 
The graphic plotted to describe the increasing thickness 

for each bilayer (HA/COL) deposited reveals a mean growth 
of 30-40 nm (Fig. 2.). This increase can be considered linear.  
 

 
Fig. 2.  Growth of thickness in µm for a three bilayer structure 

 
Bioinspired coating obtained with the adsorption of 

bioactive macromolecules are capable to enhance 
osseointegration, improving cells adhesion, spreading and 
proliferation on implant surfaces [34]. In this work, we used 
porous titanium and smooth titanium substrates (Fig. 3.). 

 

 
 
Fig. 3. SEM image of a Ti porous sample covered with 8 bilayers of 
HA/COL (panel a); SEM image of a Ti smooth sample with 8 bilayers 
 



  

Confirmation about the success of the deposition protocol 
of PEI(HA/COL)8 is shown in Fig. 4. This image compares 
non-treated titanium substrate (panel a) and functionalized 
titanium substrate (panel b). The coating levelled the 
nanometric features of the titanium dioxide interface, making 
it smoother in respect to rough pristine titanium. 
 

 
 
Fig. 4. SEM image comparison between pristine titanium (panel a) and 
functionalized titanium (panel b) 

 
The same deposition protocol was performed on planar 

silicon to assess if the adsorbed fibers of collagen assumed a 
preferential orientation. PEI/(HA/COL) architecture was 
deposited on the silicon samples, then characterized via 
AFM. The superior spatial resolution of the AFM image 
(Fig. 4) reveals the presence of fibrillar aggregates and a 
random disposition of collagen fibers. LbL technique cannot  
guide the assembly of fibers in ordered unit, but it is useful 
to functionalize the interface topography of biomaterials 
improving osteoconductive performances of the implants. 
 

 

 
 
Fig. 4. AFM characterization of silicon substrate functionalized with 
PEI/(HA/COL)  

 
In vitro growth of cells, evaluated via PrestoBlue assay, 

shows the greater biocompatibility of PEI(HA/COL)8 on 
porous titanium substrates than other functionalized samples. 
All samples present the same adhesion potential at day one, 

but proliferation tests conducted after 3 days of culture show 
that eight bilayer porous titanium is significantly better than 
other samples. 

 
  

 
 
Fig. 5.  Prestoblue reduction on different samples with different coatings 

 
The 8 bilayers structure has been SEM characterized. 

Results are shown in Fig. 6. 
 

            
 
Fig. 6. SEM image of a porous titanium sample functionalized by 
PEI(HA/COL)8 with seeded cells  

 

IV.  CONCLUSION 

Future biomaterials need to be designed considering every 
cascade of biological event that takes place when a 
biomedical implant is inserted in the human tissue. Implant 
covered with multilayer of bioactive macromolecules can 
avoid main limitations of arthroplasties as micromotion at 
the interface and peri-implant infections. These biocoatings 
can enhance functionality and biological efficacy of 
biomaterial, avoiding bacterial adhesion and maximizing 
osteoconductive processes. 

The development of these polyelectrolyte multilayer 
coatings can be regarded as a first step to the realization of a 
smart coating capable of enhance osteoconductivity and 
reduce bacterial infections in biomaterials.  
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