
  

 

Abstract—The incorporation of wavelet-based multiscale 

image decomposition in motion-estimation schemes has been 

shown to have a favourable impact on accuracy in tracking 

motion of the carotid artery wall from B-mode ultrasound 

image sequences. In this work, in an attempt to further enhance 

accuracy, we investigate the effects of different parameters of 

multiscale image decomposition. To this end, we optimize 

multiscale weighted least-squares optical flow (MWLSOF), a 

previously presented multiscale motion estimator, in terms of 

(a) the type of wavelet transform (WT) (discrete (DWT) and 

stationary (SWT) WTs), (b) the WT function and (c) the total 

number of levels of image decomposition. The optimization is 

performed in the context of an in silico data framework, 

consisting of simulated ultrasound image sequences of the 

carotid artery. We propose SWT, a high-order coiflet function 

(ex. coif5) and one level of multiscale image decomposition as 

the optimal parameterization for MWLSOF to achieve 

maximum accuracy in the particular application. Finally, we 

demonstrate the usefulness of an accurate motion estimator in 

real data experiments, by applying the optimized MWLSOF to 

real image data of patients with carotid atherosclerosis. 

I. INTRODUCTION 

Arterial wall motion during the cardiac cycle can be 

estimated from B-mode ultrasound by recording image 

sequences and, subsequently, applying motion estimation 

algorithms to the successive frames of the image sequences. 

Several studies on the wall-lumen interface and within the 

tissue [1], adjacent arterial layers [2], proximal and distal 

arterial walls [3], and atherosclerotic plaques [4] have shown 

that motion estimators can adequately characterize the 

arterial wall motion from ultrasound image sequences.  

Multiscale motion estimation additionally includes the 

decomposition of the images of a sequence using multiscale 

transforms. Multiscale motion estimation has been shown to 
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be superior to the standard approach for motion estimation 

(i.e. direct application of motion algorithms to the image 

sequences), probably because it provides information about 

motion structures at different resolutions and scales. 

Specifically, the combination of conventional motion 

estimators with wavelet-based multiscale image analysis has 

significantly enhanced their accuracy in estimating radial and 

longitudinal displacements of the carotid artery wall; 

multiscale versions of block matching [5], affine optical flow 

[6] and weighted least-squares optical flow (WLSOF) [7] 

yielded average error reductions up to 70%, 9% and 14%, 

respectively. However, the discrete wavelet transform 

(DWT) used in these studies has a major disadvantage, 

which may limit the potential of multiscale motion 

estimation; DWT is shift variant, i.e. the wavelet coefficients 

of the original image and its shifted versions differ.  

Based on the above, the purpose of this paper is to 

optimize multiscale motion estimation in terms of multiscale 

procedures. To this end, the multiscale version of WLSOF 

(MWLSOF) [7] was used, because WLSOF has been shown 

to outperform other motion estimators [8] and MWLSOF has 

been most effective among the investigated multiscale 

motion estimators [5]-[7]. In the context of an in silico data 

framework, MWLSOF was optimized in terms of (a) the 

wavelet transform (WT), by comparing the DWT and the 

stationary WT (SWT), (b) the WT function and (c) the total 

number of levels of image decomposition. The optimized 

MWLSOF was then applied to real ultrasound image 

sequences of patients with carotid atherosclerosis. 

II. MATERIAL & METHODS 

A. Multiscale Weighted Least-Squares Optical Flow  

WLSOF is a differential algorithm, which estimates a pixel’s 

velocity using the pixels in a local neighborhood, assuming 

that they share the same velocity. A detailed presentation of 

the algorithm and the parameterization that assures maximal 

accuracy in motion tracking is available in [8]. MWLSOF is 

based on the combination of WLSOF with multiscale image 

analysis using a 2-dimensional (2D) WT [7]. 

The 2D WT of an image is defined as two successive 

WTs, firstly on the rows of the image and then on the 

columns of the resulted image. The decomposition of the 

image yields four subimages at the first level (j=1), namely 

an approximation subimage A1 and the horizontal, vertical, 

Multiscale motion analysis of the carotid artery wall from B-mode 

ultrasound: investigating the optimal wavelet parameterization 

N. N. Tsiaparas, Student Member, IEEE, A. Gastounioti, Student Member, IEEE, S. Golemati, 

Member, IEEE, and K. S. Nikita, Senior Member, IEEE 

978-1-4799-3163-7/13/$31.00 ©2013 IEEE



  

and diagonal detail subimages Dh1, Dv1, and Dd1, 

respectively. Each subimage is the result of a convolution 

with two half-band filters; two lowpass filters for A1, a 

lowpass and a highpass for Dh1, a highpass and a lowpass for 

Dv1, and two highpass filters for Dd1. At the next, and each 

subsequent, level, only the approximation subimage is 

further decomposed into new four suimages. The total 

number of levels L depends on the size of the original image; 

the maximum value of L is equal to min (log2N, log2M), 

where N is the number of rows and M is the number of 

columns. The WT is called DWT if, at every level, 

convolution with filters is followed by downsampling; 

otherwise the WT is called SWT (see [9] for more details).  

Briefly, MWLSOF consists of the following steps [7]: (1) 

The images of a sequence are decomposed up to L levels 

using a 2D WT. (2) A pixel is selected as a target in the first 

image of the sequence of original images. (3) WLSOF is 

initially performed at the highest decomposition level L and 

the radial, radL, and longitudinal, longL, positions of the 

target are estimated. (4) For every lower decomposition level 

j, with 0≤j<L, measurements of radj and longj are obtained 

by performing WLSOF at that level. The final measurements 

for level j are estimated by combining radj and longj, with 

radj+1, and longj+1. This step gradually leads to the final 

estimates for j=0 (rad0 and long0), which also correspond to 

the final motion estimates. (5) The final radj and longj for 

0<j≤L are updated by appropriately scaling rad0 and long0. 

B. In Silico Optimization of Multiscale Procedures 

As explained before, DWT and SWT both yield four 

(approximation, horizontal, vertical, and diagonal) 

subimages at each level of image decomposition. MWLSOF 

can be implemented by using either one of them or all four 

subimages. Preliminary studies have showed that maximum 

accuracy for MWLSOF, using DWT, is achieved when the 

approximation subimages are used [7]. Given that this choice 

also significantly reduces the computational cost of SWT, 

the approximation subimages were selected in this study, too.  

DWT-based MWLSOF has achieved optimal performance 

for L=1 [7]. This study investigated whether this choice is 

also optimal for SWT. However, the main optimization of 

MWLSOF concerned the type of WT (i.e. DWT or SWT) 

and the WT function.  

In terms of the WT function, 49 alternatives were 

investigated. The criteria that were used to select these 

functions included the compact support (filters with finite 

support), the existence of a scaling function (which is 

produced by a low pass filter) and the orthogonality (which 

allows fast discrete transformed implementation). Therefore, 

crude and infinitely regular WT functions, such as Gaussian, 

Morlet, Mexican hat and Meyer, were excluded. Only 

orthogonal (Daubechy, coiflet, symlet) and 

biorthogonal/reverse biorthogonal WT functions were used. 

Among them, and by taking the size of the original images 

into consideration, WT functions produced by filters with 

higher than 30 samples were also excluded. The remaining 

WT functions have different properties, i.e. vanishing 

moments (order), symmetry, length and parity of their filters 

(Table 1).  

Table 1: Properties of wavelet functions. VM: vanishing moments; LP-L: 

length of low-pass filter; HP-L: length of high-pass filter; PR: parity of 

filter (1 odd, 2 even); SM: Symmetry of the filter (0 no, 1 near, 2 yes). 

Wavelet family: db: Daubechy, sym: symlet, bior: biorthogonal, coif: 

coiflet, rbio: reverse biorthogonal. 

No. Abbreviation VM LP-L HP-L PR SM 

1 db1 (haar) 1 2 2 2 2 
2 db2 2 4 4 2 0 

3 db3 3 6 6 2 0 

4 db4 4 8 8 2 0 

5 db5 5 10 10 2 0 

6 db6 6 12 12 2 0 

7 db7 7 14 14 2 0 

8 db8 8 16 16 2 0 

9 db9 9 18 18 2 0 

10 db10 10 20 20 2 0 

11 sym1 1 2 2 2 1 

12 sym2 2 4 4 2 1 

13 sym3 3 6 6 2 1 

14 sym4 4 8 8 2 1 

15 sym5 5 10 10 2 1 

16 sym6 6 12 12 2 1 

17 sym7 7 14 14 2 1 

18 sym8 8 16 16 2 1 

19 sym9 9 18 18 2 1 

20 sym10 10 20 20 2 1 

21 coif1 1 6 6 1 1 

22 coif2 2 12 12 2 1 

23 coif3 3 18 18 2 1 

24 coif4 4 24 24 2 1 

25 coif5 5 30 30 2 1 

26 bior2.2 2.2 5 3 1 2 

27 bior2.4 2.4 9 3 1 2 

28 bior2.6 2.6 13 3 1 2 

29 bior2.8 2.8 17 3 1 2 

30 bior3.1 3.1 4 4 2 2 

31 bior3.3 3.3 8 4 2 2 

32 bior3.5 3.5 12 4 2 2 

33 bior3.7 3.7 16 4 2 2 

34 bior3.9 3.9 20 4 2 2 

35 bior4.4 4.4 9 7 1 2 

36 bior5.5 5.5 9 11 1 2 

37 bior6.8 6.8 17 11 1 2 

38 rbior2.2 2.2 3 5 1 2 

39 rbior2.4 2.4 3 9 1 2 

40 rbior2.6 2.6 3 13 1 2 

41 rbior2.8 2.8 3 17 1 2 

42 rbior3.1 3.1 4 4 2 2 

43 rbior3.3 3.3 4 8 2 2 

44 rbior3.5 3.5 4 12 2 2 

45 rbior3.7 3.7 4 16 2 2 

46 rbior3.9 3.9 4 20 2 2 

47 rbior4.4 4.4 7 9 1 2 

48 rbior5.5 5.5 11 9 1 2 

49 rbior6.8 6.8 11 17 1 2 

The optimization of MWLSOF was performed in the 

context of an in silico data framework, consisting of 6 

simulated image sequences of the carotid artery, for which 

ground-truth is available [8]. Briefly, the first image 

sequence (S0) was simulated by deforming a real image of 

the carotid artery of a young subject. Four additional image 

sequences were generated, by adding different levels of 

Gaussian (SG25 and SG15) or speckle (SSP25 and SSP15) noise. 

The sixth image sequence was simulated using an ultrasound 

simulation package, which incorporates realistic transducer 

features. Approximately 200 motion targets were selected for 



  

each image sequence and accuracy in motion estimation was 

evaluated using the warping index, defined as the mean 

geometric error, in pixels, between the ground-truth and the 

estimated displacements for all motion targets [8]. 

C. Real Data Application 

In an attempt to demonstrate the significant role of an 

accurate motion estimator in studying the mechanical 

behavior of the arterial wall, the optimized version of 

MWLSOF was applied to B-mode ultrasound image 

sequences of the carotid artery of an asymptomatic and a 

symptomatic patient with established carotid atherosclerosis. 

Carotid arteries were imaged in longitudinal sections (Fig. 

1), using the following scanner settings: dynamic range, 75 

dB; persistence, low; and frame rate, 33 frames/s. MWLSOF 

was used to produce radial strain (RS) waveforms which 

represent local deformations (i.e. ratios of change in radial 

distance to initial radial distance) between (a) healthy parts 

of the anterior and posterior walls (RS at wall) and (b) the 

top and bottom surfaces of the plaque (RS at plaque) [8]. 

 

  
Figure 1: First frames of ultrasound image sequences for (a) an 

asymptomatic and (b) a symptomatic patient with carotid atherosclerosis. 

The outlines of the atherosclerotic plaques are marked in white colour. 

III. RESULTS & DISCUSSION 

Figure 2 shows bar plots of mean, over all WT functions, 

warping indices produced by MWLSOF for varying L 

values, using either SWT or DWT. In all cases, the amount 

of energy in approximation images reduces as L increases; 

hence, similarly to DWT [7], the lowest warping indices for 

SWT were obtained for L=1. 

Table 2 presents mean ± standard deviation, minimum and 

maximum, over all WT functions, warping indices produced 

by MWLSOF for L=1, using either SWT or DWT. In 

general, SWT produced statistically lower indices than 

DWT. This is probably associated with the limitation posed 

by the DWT’s shift-variant property. Exceptions were 

observed for SG25 and SG15. This might be due to the type of 

noise added on the sequences; high frequency noise is 

concentrated on the detail subimages of the first level of 

image decomposition and the downsampling procedure of 

DWT probably results in the elimination of a high amount of 

noise components. 

According to Table 2, the lowest warping index for each 

image sequence was obtained by a high-order WT function. 

In contrast, the highest warping indices were obtained by a 

low-order WT function. The order of the WT function 

provides information about the degree of polynomials used 

to represent images; the higher the order, the better the 

representation of complex images. The order is also entirely 

determined by the length of the lowpass filter, with high-

order WT functions resulting in appropriate damping of the 

oscillations of its coefficients out of the region of interest. 

 
Figure 2: Bar plots of mean, over all wavelet functions, warping indices (in 

pixels) produced by MWLSOF for varying levels of image decomposition 

(L=1, 2, 3), using either SWT (top) or DWT (bottom). T – lines represend 

mean values in ± 3 standard deviations. 

 

Table 2:  Warping indices, in pixels, produced by MWLSOF for 1 level of 

image decomposition, using either SWT or DWT for each image sequence. 

The presented values correspond to mean ± standard deviation, over all 

wavelet functions, warping indices. Minimum and maximum warping 

indices (and the corresponding wavelet functions) are also presented for 

each case. 

 
DWT SWT 

 
mean min max mean min max 

  ±std (wavelet) (wavelet) ±std (wavelet) (wavelet) 

S0 0.91 0.87 0.91 0.71 0.67 0.75 

 
±0.01 (db10) (bior3.9) ±0.02* (sym10) (db1) 

SG25 1.76 1.67 1.78 1.76 1.70 1.81 

 
±0.01 (bior3.1) (bior3.5) ±0.04 (db9) (db2) 

SG15 2.47 2.38 2.51 2.55 2.46 2.64 

 
±0.03 (db10) (rbio5.5) ±0.05 (rbior3.9) (db1) 

SF 2.23 2.17 2.27 1.82 1.73 1.98 

 
±0.02 (db10) (bior3.1) ±0.06* (bior3.9) (db1) 

SSP25 1.04 1.01 1.04 0.82 0.8 0.85 

 
±0.01 (db10) (bior3.1) ±0.01* (db8) (bior3.1) 

SSP15 1.76 1.73 1.78 1.66 1.57 1.74 

  ±0.13 (db9) (bior3.3) ±0.04* (coif5) (bior3.1) 

* Significantly different compared to DWT (t-test, p<0.001). 

Boldface indicates lowest warping index values for each image sequence. 

General linear models and univariate procedures for each 

image sequence, and SWT for one level of image 

decomposition, were used to define the main effects of the 

length of lowpass filter, its parity and symmetry on warping 

indices (Table 3). The length of highpass filter was excluded 

due to high correlation with the lowpass filter. No 

statistically significant effects were found for the parity and 

symmetry properties. In contrast, as expected, there was a 

high association between the warping index and the length of 

the lowpass filter in each model. 



  

Table 3: Statistical significance (p-value) after univariate analysis of 

variance for SWT and 1 level of image decomposition for each  image 

sequence; LP-L: length of low-pass filter. 

 
S0 SG25 SG15 SF SSP25 SSP15 

Symmetry 0.467 0.415 0.793 0.629 0.507 0.813 

Parity 0.589 0.800 0.289 0.166 0.197 0.262 

LP-L <0.001 <0.001 <0.001 0.003 <0.001 <0.001 

Table 4 shows the mean, over all WT functions of each 

wavelet family, warping indices produced by SWT-based 

MWLSOF for L=1. The coiflet family produced the lowest 

values for most of the sequences. Considering the results of 

Tables 2 and 4, a high-order coiflet WT function, ex. coif5 

which produced lowest warping indices for SSP15, is proposed 

as the most suitable choice for SWT-based MWLSOF. 

Figure 3 illustrates the superiority, in terms of accuracy in 

motion tracking, of this optimal version of MWLSOF (i.e. 

using SWT for coif5 and L=1) with respect to WLSOF [7].    

Table 4: Mean, over all functions of a wavelet family, warping indices, in 

pixels, produced by MWLSOF for 1 level of image decomposition using 

SWT. 

 
So SG25 SG15 SF SSP25 SSP15

5 coiflet 0.71 1.74 2.52 1.83 0.82 1.63 

Daubechy 0.71 1.75 2.54 1.83 0.81 1.66 

symlet 0.72 1.78 2.57 1.83 0.82 1.68 

biorthogonal 0.71 1.77 2.57 1.80 0.83 1.68 

reverse biorthogonal 0.72 1.77 2.54 1.82 0.82 1.65 

Boldface indicates the lowest value for each image sequence. 

Figure 4 presents the RS waveforms which were generated 

from the application of the optimized MWLSOF to real 

ultrasound image data. All waveforms exhibited distinct 

periodic patterns, while RS at plaque seems to synchronize 

with RS at wall for both patients. Moreover, with respect to 

the asymptomatic patient, the symptomatic one demonstrated 

RS at plaque of higher amplitude; the opposite was observed 

for RS at wall. Such observations reveal deformations which 

occur within the wall and may have a significant effect on the 

vulnerability of atherosclerotic lesions. 

 
Figure 3: Warping indices (in pixels) produced by WLSOF and the 

optimized version of MWLSOF.  

IV. CONCLUSION 

This study demonstrated that different parameters of 

multiscale image decomposition have a significant impact on 

the accuracy of multiscale motion estimators in tracking 

motion of the carotid artery wall from B-mode ultrasound 

images. Multiscale image analysis using SWT and a high-

order WT function for 1 level of image decomposition 

compose the optimal parameterization. Specifically, among 

wavelet families, high-order coiflet functions (ex. coif 5) are 

proposed as more suitable for the particular application.  

 

 
Figure 4: Strain waveforms for an asymptomatic (dotted line) and a 

symptomatic (solid line) patient with carotid atherosclerosis. 
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