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Abstract—A major goal of the application of Machine 

Learning techniques to high-throughput genomics data (e.g. 

DNA microarrays or RNA-Seq), is the identification of “gene 

signatures”. These signatures can be used to discriminate 

among healthy or disease states (e.g. normal vs cancerous tissue) 

or among different biological mechanisms, at the gene 

expression level. Thus, the literature is plenty of studies, where 

numerous feature selection techniques are applied, in an effort 

to reduce the noise and dimensionality of such datasets. 

However, little attention is given to the stability of these 

signatures, in cases where the original dataset is perturbed by 

adding, removing or simply resampling the original 

observations. In this article, we are assessing the stability of a 

set of well characterized public cancer microarray datasets, 

using five popular feature selection algorithms in the field of 

high-throughput genomics data analysis. 

I. INTRODUCTION 

URING the past fifteen years, the fields of molecular 

biology and genomics have witnessed incredible 

technological advances which continue to emerge. 

Established high-throughput techniques (e.g. DNA 

microarrays, [1]) or more recent ones (e.g. RNA-Seq, [2]) 

have allowed molecular biologists to quickly perform either 

large-scale descriptive studies (e.g. [3]) or to deeply 

investigate well-controlled biological systems and/or 

organism models. Although the experimental and clinical 

applications of high-throughput genomics are practically 

unlimited, a lot of effort has been put to the identification of 

gene expression “signatures” able to distinguish between 

healthy or pathological states or among disease states only, 

with particular focus in several cancer types. Such studies 

include breast cancer ([4, 5]), hematological cancers ([6, 7]), 

colon cancer ([8]) etc. 

To accomplish the goal of identifying comprehensive gene 

signatures, techniques from the Machine Learning field have 

been extensively used. For example, the aforementioned 

 
Manuscript received July 25, 2013. The work of G.B. has been funded 

by ARC, French Community, Belgium 

P.M. is with the Institute of Molecular Biology and Genetics, BSRC 

„Alexander Fleming‟, 16672, Vari, Greece (corresponding author, phone: 

+30-210-9656310, e-mail: moulos@fleming.gr). 

I.K. is with the Department of Information and Communication Systems 

Engineering, University of the Aegean, 83200, Karlovasi, Samos, Greece 

(e-mail: kanaris.i@aegean.gr). 

G.B. is with the Machine Learning Group, Computer Science 

Department, Université Libre de Bruxelles and with the Interuniversity 

Institute of Bioinformatics in Brussels - (IB)2, 1050, Brussels, Belgium (e-

mail: gbonte@ulb.ac.be).  

 

studies use a combination of feature selection and 

classification algorithms, where gene expression values 

comprise features/variables in a statistical model, and disease 

states represent the classes. In this work we examine the 

stability of five feature selection algorithms widely used in 

classification of microarray data, when the latter are 

subjected to perturbations. 

II.  RELATED WORK 

The literature on feature selection stability is rather limited, 

let alone for biological applications. Previous studies 

introducing stability issues and proposing stability metrics 

include among others work by Kalousis et al., where stability 

is measured in terms of Pearson and Spearman correlation 

across ranked feature lists, as well as with an adaptation of 

the Tanimoto distance, [9]. Dunne et al. in [10] use the 

Hamming distance to assess the stability of selection by 

converting ranked lists to binary vectors. Regarding 

biomedical datasets, the issue is well defined by Lustgarten 

et al. in [11]. A complete study including feature selection 

performance, stability and classification accuracy using high-

throughput data is presented by Haury et al. in [12]. 

However, the stability measurements are limited. 

III. MATERIALS AND METHODS  

A. Feature Selection Stability 

An important question arising during feature selection 

procedures is how sensitive a subset of ranked features is to 

perturbations. Specifically, let G = (g1, g2, …, gn) the total 

set of features/variables in a classification problem (e.g. the 

number of genes in a microarray) and let S1 = (g11, g12, …, 

g1N) a partial list of top N ranked features in ascending order 

obtained with feature selection algorithm A. If we apply a 

perturbation (e.g. bootstrapping the samples) and apply again 

A, we might obtain a different list S2 = (g21, g22, …, g2N). 

Some S1 members could correspond exactly to the members 

of S2 (presence and rank), some of them could have a 

different rank, or some that appear in S1 may not appear at 

all in S2. This issue is referred as the stability problem in 

feature selection ([13]) and is the main subject of the present 

work. 

Statistically, the sensitivity of feature selection can be 

formalized as a set of permutations of a full list Sn with n 

objects (n the number of features) where each of the n 

objects appears only once in each permutation of Sn 
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(permutation without replacement). Formally, a permutation 

π on a set Sn = (g1, g2, …, gn) of objects is a bijective 

function between Sn and Sn. In the frame of microarray data, 

the n genes involved in the problem are indexed with an 

integer between 1 and n and every ranked list is exactly a 

permutation π on the set {1,…, n}, where the image π(i) of 

the i
th

 gene is its ranking inside the list π. Thus, π can be 

referred as a full ranking list of the objects of Gn. 

Furthermore, in the case of the top N ranked objects of Gn, 

we define as π* the partial ranking list of Gn which contains 

the first N elements of π. 

To assess the variability between such permutations we 

have to: i) summarize the difference between two full 

ranking lists π and σ and ii) summarize the difference 

between two partial ranking lists π* and σ*. In a theoretical 

context, the problem of comparing full ranking lists has been 

previously discussed in statistical literature (e.g in [14]) 

where metrics based on data ranking are used to compare full 

ranking lists (e.g. the Spearman’s Footrule). The problem of 

comparing partial ranking lists has also been studied ([14, 

15]). The proposed solutions extend already existent metrics 

applied to full ranking lists by using the Hausdorff metric: 

    , m ax m in ,
H
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d A B d a b


  (1) 

B. Datasets 

For the purpose of this study, we used the following four 

publicly available and well studied cancer microarray 

datasets (two of them consisting of more than two classes): 

1) The HBC dataset ([4]): this dataset consists of 3226 

genes and 22 patients with hereditary breast cancer, 

sampled from three classes. The first two classes are 

labeled as “BRCA1” and “BRCA2” and they correspond 

to the mutation of the homonymous genes. The third 

class is named Sporadic, and corresponds to other 

genetic mutations. The dataset is randomly split to a test 

and a training set, holding out a random 25% of the 

samples (with classes equally distributed in the training 

and test sets).  

2) The MLL dataset ([6]): this dataset consists of 12582 

genes and 72 patients with three types of leukemia: 24 

patients with ALL (Acute Lymphoblastic Leukemia), 28 

patients with AML (Acute Myeloblastic Leukemia) and 

20 patients with MLL (Mixed Lineage Leukemia). The 

dataset is split to training and test samples according to 

the original publication. 

3) The ALL/AML Leukemia dataset (Golub, [7]): this 

dataset is historically one of the first datasets used for 

molecular classification of cancers based on microarray 

studies. The ALL and AML abbreviations are described 

in dataset (2). The set consists of 72 patients (47 ALL + 

25 AML) and 7129 genes. The dataset is split to training 

and test samples according to [7]. 

4) The B cell diffuse large cell lymphoma (B-DLCL) 

dataset ([16]): this dataset consists of 47 patients, 4026 

genes and two classes: 24 patients with germinal center 

B cell-like DLCL and 23 patients with activated B cell-

like DLCL. From the 24 samples of the first class and 

the 23 of the second, 6 samples of each are held as 

testing samples and the other used for training. 

C. Feature Selection Algorithms 

We applied five widely used feature selection methods, 

which function independently of the classifier (filters): i) the 

Student‟s t-test between samples of different classes, ii) the 

Pearson and iii) the Spearman‟s  correlation, between the 

gene expression values and the class assignment vector, iv) 

the Information Gain filter and v) the Gini index. The 

number of top scored features that we stored after each 

perturbation was N=100. While selecting N was trivial for 

the 2-class datasets, for the multiclass datasets we performed 

the feature selection for all possible C one-vs-rest 

comparisons (where C is the number of classes). Then, we 

built the final feature sets by selecting N/C top features 

from each comparison, where 
.
 is the ceiling function. 

D. Stability of Selection 

Definition: The stability of feature selection for a given 

dataset and selection algorithm is the stability of appearance 

of the selected high-score features upon applying a 

perturbation scheme on the original dataset. 

We measure the stability of selection with an alternative of 

the Hamming distance as proposed in [10]. Given two binary 

vectors li, lj, the Hamming distance between them is  

 
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Given a list of features S, where each feature is assigned a 

number from 1…n, n the total number of features, the list can 

be represented by a binary vector l of length n (feature 

mask), where 0s represent the absence of a specific feature 

and 1s represent its presence. Thus, the similarity between 

two feature masks can be measured by the Hamming 

Distance as defined above. Furthermore, in order to measure 

the similarity between all pairs of partial ranking lists 

produced after m MC iterations, we define the total 

Hamming Distance between m feature masks as 

 
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We normalize (2) by dividing by Ni + Nj, where Ni and Nj 

are the top ranked features selected in MC iterations i and j 

respectively. The sum Ni + Nj represents the maximum 

possible different features (and consequently the maximum 

Hamming distance) between two feature masks and Ni + Nj  

2N. Finally, we define the mean normalized Hamming 

distance for all the m(m-1)/2 pairwise feature mask distances 

of m MC iterations as 
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Hnorm lies between 0 and 1. A value close to 0 represents 



  

low stability while a value close to 1 represents high 

stability. To illustrate an example, let S1 = (1,2,3), S2 = 

(2,4,5), m = 2, n = 5 and N = 3. S1 and S2 lead to the feature 

masks l1 = (1,1,1,0,0) and l2 = (0,1,0,1,1), thus Hnorm = 1 – 

(1/6)*(1 + 0 + 1 + 1 + 1) = 0.3333. 

E. Stability of Ranking 

Definition: The stability of feature ranking for a given 

dataset and selection algorithm is the stability of both the 

appearance and the ranking order of the selected high-score 

features upon applying a perturbation scheme on the original 

dataset. 

In order to measure the stability of feature ranking we 

apply an alternative of the Spearman’s Footrule ([14]), a 

metric based on the Hausdorff distance, which can be used 

for measuring the stability of ranking for partial ranked lists. 

Before its definition, we first explain certain required 

notation elements: let Si, Sj two partial ranking lists (as in 

III.A), π and σ the full ranking lists of Si, Sj respectively, m 

the number of perturbation iterations, n the total number of 

features and N the number of top ranked features we use to 

build the high score feature lists. Let also A, B, D, E the 

following partitions of the n features: 
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This means that A consists of all features ranked in the top 

N by both π and σ, B consists of all features ranked in the top 

N by π but not by σ, and so on. Let also h = |B| = |D|, the 

number of elements in the sets B and D. We can now define 

the Spearman’s Footrule for partial ranking lists: 

           ,
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The SFp can be normalized by its maximum value which 

can be calculated if we consider the most distant partial 

ranking lists between n objects, which are Slow = (1,…,N) and 

Shigh = (n,…,n – N + 1). Thus, SFp,max = SFp(Slow, Shigh). We 

also define the mean value of SFp for all the m(m-1)/2 

pairwise distances of m perturbations as: 
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A value of SFp,norm closer to 0 means low stability while a 

value closer to 1 means high stability. To illustrate an 

example, let π = (1,2,3,5,4), σ = (2,4,5,1,3), S1 = (1,2,3), S2 

= (2,4,5), m = 2,     n =  5, N = 3. Then A = {1}, B = {2,3}, 

D = {4,5}, E = , |A| = 1, |B| = |D| = 2, |E| = 0 and thus 

SFp,norm = 1 – (1/12)*2*(2*5 + 1 – 2) + |1 – 2| – (2 + 3) – (1 

+ 3) = 0.1667    

F. Perturbation scheme 

As perturbation scheme, we chose a set of 100 Monte 

Carlo (MC) simulations performed on each dataset. In each 

MC iteration, the samples of the original dataset are 

bootstrapped, creating a new instance of the feature selection 

problem with slightly altered initial conditions (different sets 

of samples for each class). 

IV. RESULTS AND DISCUSSION 

A. Visualization of Feature Selection Instability 

Fig. 1 depicts the feature selection stability by plotting the 

feature index (1…N) against the frequency that a specific 

feature appears during the feature selection process after 

applying m=100 perturbations. 

 
From Fig. 1, it is evident that certain features are selected 

more frequently than others during the selection-perturbation 

loop and the frequency depends i) on the method used and ii) 

on the complexity of the dataset. Thus, it appears than in 

both cases depicted in Fig. 1, Pearson correlation-based 

selection performs better than Information Gain in terms of 

stability. However, stability is increased for both methods in 

the case of the Golub dataset (2-class problem) as compared 

to the HBC dataset (three classes). 

B. Stability Measurements 

Fig. 2 presents bar charts depicting the stability of 

selection for each dataset and for each feature selection 

method applied in this study. The first observation after the 

completion of the simulation is that the overall stability of 

selection is not greater than 45%. This indicates that the 

filter-based feature selection procedure is a process very 

sensitive to perturbations, at least in the context of 

biomedical high-throughput datasets. Thus, it should be 

taken into account when the aim of the study is the derivation 

of a gene signature characterizing disease. 

In addition, the stability of selection is generally higher for 

feature sets derived from 2-class datasets than from 

multiclass datasets, something to be expected due to the 

higher complexity of the latter. This appears to be partially 

remedied by the number of available samples, as the stability 

 
Fig 1: Frequencies of selected features (genes) for the HBC (three 

classes) and the Golub (two classes) datasets, using the Pearson 

correlation-based selection method and the Information Gain filter. 



  

is higher for the MLL dataset than for the HBC dataset. The 

latter shows the lowest stability during the perturbation-

feature selection loop and we attribute this to the small 

number of samples related to the number of classes and the 

number of features in the dataset. 

 
Finally, the overall best performance can be attributed to 

the correlation based methods, followed by the Information 

Gain and Gini index. The t-test demonstrates the poorest 

performance. 

Similarly to the case of stability of selection, Fig. 3 

presents bar charts depicting the stability of ranking for the 

same settings. 

 
From Fig. 3 it is evident that the stability of ranking is 

proportional to the stability of selection, with the t-test being 

the less robust selection method and the HBC dataset 

demonstrating the poorest stability. Thus, the extent of 

variability in terms of different features selected after dataset 

perturbation appears similar to the extent of variability in 

terms of feature priority in the different signatures. 

Consequently, the stability of ranking can be used as a 

combined measurement of gene signature stability, as it 

appears able to capture both the stability selection and 

ranking attributes of gene signatures.  

CONCLUSIONS AND FUTURE WORK 

In this article, we have studied the stability of several 

feature selection algorithms used to reduce the 

dimensionality of classification problems in high-throughput 

genomics. We have demonstrated that feature selection is a 

sensitive process and its stability must be taken into account 

in studies aiming at deriving gene signatures that distinguish 

between pathological states. In the future, we will extend our 

study by assessing the stability of several publicly available 

datasets using additional metrics of feature selection 

stability, over additional feature selection algorithms. We 

will also measure the effect of dataset perturbation and 

subsequent feature selection in prediction accuracy, using 

well established classifiers.  
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Fig. 2: Stability of selection for each feature selection method and 

each datasets used in this study. 

 
Fig. 3: Stability of ranking for each feature selection method and each 

datasets used in this study. 


