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Abstract— Gene Expression Datasets (GEDs) usually consist
of the expression values of thousands of genes within hundreds
of samples. Frequent itemset and association rule mining algo-
rithms have been applied to discover significant co-expressions
among multiple genes from GEDs. To perform these data
analyses, gene expression values are commonly discretized into
a predefined number of bins. Such an expert-driven and not
trivial preprocessing step could bias the quality of the mining
result. This paper presents a novel approach to discovering
gene correlations from GEDs which does not require data dis-
cretization. By representing per-sample gene expression values
as item weights, frequent weighted itemsets can be extracted.
The discovery of weighted itemsets instead of traditional (not
weighted) ones prevents experts from discretizing GEDs before
analyzing them and thus improves the effectiveness of the
knowledge discovery process. Experiments performed on real
GEDs demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Gene expression is the process by which information
from a gene is used in the synthesis of a functional gene
product [1]. These products are often proteins, but in non-
protein coding genes such as rRNA genes or tRNA genes,
the product is a functional RNA. In recent years, the rapid
advance of molecular biology techniques (e.g., microarray
analysis) has allowed biologists to generate thousands of
gene expression measurements in a short time. Gene Expres-
sion Datasets (GEDs) usually collect the expression values of
thousands of genes within hundreds of samples. Samples can
relate to different organisms or tissues and can be acquired
in different environmental conditions.

Data mining, which focuses on studying effective and
efficient algorithms to transform large amounts of data into
useful knowledge [2], may provide valuable insights into
GEDs. Several works have exploited clustering algorithms
to identify groups of genes that are strongly correlated with
each other, but uncorrelated with those of other groups [3]–
[5]. In [6] a step further towards the generation of 3D
gene clusters has been made. The authors propose Par-
TriCluster, an algorithm that discovers groups of genes
behaving similarly across samples and time stamps. The
research community also proposed effective classification
techniques, i.e. supervised data analysis methods, to correlate

Manuscript received July 25, 2013. This work was supported by the
GenData2020 project grant, which is funded by the Italian Ministry of
Research (MIUR).

Elena Baralis, Luca Cagliero, Tania Cerquitelli, Silvia Chiusano, and
Paolo Garza are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Turin, Italy
{name}.{surname}@polito.it

gene expression patterns with given classification labels [7]–
[9]. In the context of GED analysis, frequent itemset and
association rule mining [10] have been exploited to (i) ex-
tract biologically relevant co-expressions among multiple
genes [11]; (ii) discover correlations between environmental
effects and gene expressions [12]; (iii) profile gene expres-
sions according to a worthwhile subset of gene correla-
tions [13]; (iv) determine biological data duplicates [14].
A parallel effort has also been devoted to developing novel
itemset mining algorithms that are able to effectively cope
with high-dimensional biological data (e.g. GEDs containing
thousands of genes) [15], [16]. However, to perform itemset
and rule mining, gene expression values are commonly
discretized into a predefined number of bins. Specifically,
experts are first asked to partition gene expression values
into three discrete subsets (i.e., low-expressed, unexpressed,
high-expressed). Then frequent itemsets, i.e. sets of co-
regulated genes (items) that frequently co-occur in a GED,
are extracted from discretized GEDs. The discretization step
could bias the quality of the mining result because experts
have to assume a reliable data distribution. Consequently,
analysts often analyze and compare the results produced by
different discretization methods [13], [17].

This paper presents a novel and more effective approach
to discovering itemsets from GEDs while avoiding the
discretization step. Rather than discretizing gene expres-
sion values before executing the itemset mining process,
we represent per-sample gene expression values as item
weights. In other words, we consider GEDs as weighted
datasets [18] for which expression values are mapped to
item (gene) occurrences within each sample. Then, weighted
itemsets are extracted from weighted data. Since item weights
can be continuous, discovering weighted itemsets instead
of traditional (not weighted) ones prevents experts from
discretizing GEDs before analyzing them. For this reason
our approach improves the effectiveness of the knowledge
discovery process. To the best of our knowledge, this work
is the first attempt to discover weighted itemsets from GEDs.

Several weighted itemset mining algorithms (e.g., [18],
[19]) have been proposed to consider item weights during
the itemset extraction process. In this study we adopted
the weighted itemset mining strategy that has recently been
proposed in [20]. To demonstrate the effectiveness of our
approach we analyzed many real GEDs. The results achieved
show the applicability of the proposed approach and signif-
icance of the patterns discovered.

This paper is organized as follows. Section II thoroughly
describes the weighted itemset mining process from GEDs.
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Section III presents the performed experiments, while Sec-
tion IV draws conclusions and presents future works.

II. WEIGHTED ITEMSET MINING FROM GENE
EXPRESSION DATA

The weighted itemset mining process from Gene Expres-
sion Datasets (GEDs) entails the following steps:
(A) Data preparation. This step focuses on preparing

GEDs to the subsequent itemset mining phase. To
make data preparation as simple as possible, we
applied the minimal amount of preprocessing steps.
Notably, we prevent experts from discretizing gene
expression values before executing the itemset mining
algorithm.

(B) Weighted itemset extraction. The preprocessed GED
data is analyzed to discover significant co-expressions
among multiple genes.

(C) Weighted itemset selection and ranking. To allow ex-
perts to manually explore the extracted patterns, the
mined itemsets are ranked and filtered according to
their main quality measures.

In the following each step is thoroughly described.

A. Data preparation

A GED consists of a set of samples, where for each
sample the expression values of a subset of genes is given.
For our purposes, we model GEDs as weighted relational
datasets. Let us consider a fixed subset G={g1, g2, . . . , gm}
of m genes gi. Genes will be also called items throughout
the paper. A weighted relational dataset D={r1, r2, . . . , rn}
is a set of n records ri, one for each GED sample. A
record ri, [1 ≤ i ≤ n], consists of a set of pairs
{〈g1, ev1i〉, 〈g2, ev2i〉, . . . , 〈gm, evmi〉}, where gj ∈ G,
∀ 1 ≤ j ≤ m. Gene occurrences in ri are characterized by a
weight, which indicates the gene expression value within the
corresponding sample. We will denote as evji the expression
value (weight) of the j-th gene gj in ri throughout the paper.

Since the expression values of different genes in different
samples are often spread across a relatively large value range,
we normalized item weights using z-score normalization [2].
Normalization is commonly applied in GED analysis [13],
[17]. Note that, unlike many data discretization methods, z-
score normalization does not require experts to set appropri-
ate threshold values.

Table I reports an example of normalized dataset with 3
samples and 4 genes. Gene occurrences within each sample
are weighted by the corresponding expression value. For
example, the normalized expression value of gene g1 in
sample r1 is 0.61. Note that genes can take either negative,
or null, or positive continuous normalized expression values.

B. Weighted itemset extraction

Frequent weighted itemsets are extracted from a weighted
relational GED dataset D using a recently proposed weighted
itemset mining strategy [20].

In the context of GED analysis, a k-itemset (i.e. an
itemset of length k) is a set of k distinct genes in D. For

TABLE I
EXAMPLE OF WEIGHTED RELATIONAL DATASET

sample ID 〈Gene, expression value〉 pairs
r1 〈g1,0.61〉, 〈g2,-0.31〉, 〈g3,-0.72〉, 〈g4,-0.45〉
r2 〈g1,0.52〉, 〈g2,0.45〉, 〈g3,0.28〉, 〈g4,0.39〉
r3 〈g1,0.51〉, 〈g2,0.67〉, 〈g3,0.45〉, 〈g4,0.38〉

example, {g1, g2} is a 2-itemset that occurs in Table I.
Traditional (not weighted) itemset mining algorithms (e.g.
Apriori [21]) commonly generate and select itemsets based
on the relative frequency of occurrence (i.e. the support [10])
in the analyzed data (disregarding item weights).

To consider item weights during itemset mining, the con-
cept of weighted support has already been introduced [18].
The key idea is to weigh itemset occurrences in each record
(sample) by the weight (expression value) of the correspond-
ing items (genes). In [20] the occurrences of an arbitrary
itemset I in D are weighted by the weight of the least
weighted item in I within each sample.

Definition 1: Weighted itemset support. Let D be a
weighted relational dataset, I a k-itemset, and G(ri) the
subset of genes that are contained in an arbitrary record
ri ∈ D. The weighted support of I in D is defined as follows.

wsup (I,D) =

∑
ri∈D| I⊆G(ri)

minj| gj∈I evji

|D|
In the context of GED analysis, itemsets represent gene
combinations, while the weighted support measure indicates
their relative frequency of occurrence in D weighted by the
expression value of their least expressed gene within each
sample. For example, the weighted support of {g1, g2} in
Table I is 0.22, because the least weighted gene expression
values in r1, r2, and r3 are -0.31, 0.45, and 0.51, respectively.

The frequent weighted itemset mining task entails ex-
tracting all the frequent weighted itemsets, i.e., the itemsets
whose weighted support is equal to or above a given (analyst-
provided) threshold wminsup.

However, the mined itemset set is often redundant, because
frequent itemsets can represent partially overlapped informa-
tion. Hence, the interestingness of part of the mining result
can be limited. To address this issue, a relevant research
effort has been devoted to discovering compact and not
redundant frequent itemset subsets [22]–[24]. In this paper
we target the extraction of two established itemset subsets,
i.e. the maximal and closed itemsets [22], [23], because they
have already been considered to be relevant itemset subsets
in the context of GED analysis [15], [16].

Closed itemsets. Closed itemsets [22] are frequent item-
sets for which none of their immediate supersets have their
same support. Since the weighted support measure satisfies
the anti-monotonicity property [20], it trivially follows that
the immediate supersets of a closed itemset have support
strictly less than those of the itemset itself. In the context
of weighted itemset mining, I is closed if and only if
(i) wsup(I ,D) ≥ wminsup and (ii) for every I2| I ⊂ I2

wsup(I2,D) ≤ wsup(I ,D).
Recalling the previous example, if we set wminsup=0.10



then {g1, g2} is closed because it is frequent and none of
its immediate supersets (i.e., {g1, g2, g3} and {g1, g2, g4})
have its same support value (0.22).

Maximal itemsets. Maximal itemsets [23] are frequent
itemsets for which all of their immediate supersets are
infrequent with respect to the given support threshold. In the
context of weighted itemset mining, I is maximal if and only
if (i) wsup(I ,D) ≥ wminsup and (ii) for every I2| I ⊂ I2

wsup(I ,D) < wminsup. Maximal itemsets are the subset of
closed itemsets characterized by maximal length.

For example, if we set wminsup=0.20 then {g1, g2} is
maximal because all of its immediate supersets are infrequent
with respect to the support threshold.

To extract closed and maximal weighted itemsets, we
adapted the FP-Growth-like [25] weighted itemset mining
algorithm implementation, which was first proposed in [20],
to closed and maximal itemset mining.

C. Weighted itemset selection and ranking

The extracted itemsets are analyzed by domain experts
to discover significant co-expressions among multiple genes.
Since the number of extracted closed or maximal itemsets
can be relatively high, analysts can select the top-K itemsets
in order of decreasing weighted support (where K is an
analyst-provided parameter). Top-K itemsets are the most
frequent gene correlations that occur in a gene expression
dataset. According to Definition 1, itemset occurrences are
weighted by the expression value of the least expressed gene.
Hence, high-support itemsets represent gene combinations
for which all the genes are highly expressed within each
sample. On the other hand, low-support itemsets could
represent noisy or less relevant information. Note that if
experts are interested in discovering valuable correlations
among multiple genes, then the analysis of the 1-itemsets
(i.e. itemsets that consist of a single gene) is meaningless.
Therefore, in such context of analysis, 1-itemsets can be
discarded early to further reduce the mined set cardinality.

III. EXPERIMENTS

We conducted experiments to analyze (i) the number and
characteristics of the extracted itemsets and (ii) the biological
significance of the mining result. We analyzed five publicly
available GEDs, whose main characteristics are summarized
in Columns (1)-(3) of Table II. Each GED contains a subset
of genes that appear in all samples. BRC-ABL, T-ALL1,
and NeuroBlastoma2 had already been analyzed in previous
research works concerning traditional (not weighted) itemset
mining (e.g. [15], [16]), whereas COLON3 and SRBCT4 had
already been used to assess the performance of biological
data classifiers (e.g. [9]).

1http://www.stjuderesearch.org/data/
2http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
3http://genomics-pubs.princeton.edu/oncology/affydata/index.html
4http://research.nhgri.nih.gov/microarray/

A. Characteristics of the extracted itemsets

Table II reports the main characteristics of the weighted
closed and maximal itemsets that were mined from the
analyzed datasets. For each dataset Column (4) indicates
the wminsup value enforced, while Columns (5) and (9)
report the number of mined weighted closed and maximal
itemsets, respectively. To demonstrate that our approach also
discovers high-order gene correlations we report the per-
length itemset cardinality. For 4 out of 5 datasets 3-length
itemsets or longer (i.e. sets of co-expressed genes composed
of at least three genes) were extracted. Such patterns are
often not considered by previous approaches. Nevertheless
to allow experts to manually explore the mining result the
number of discovered itemsets should be limited. To achieve
this goal without discarding potentially interesting gene co-
expressions, experts could consider only sets of co-expressed
genes (i.e., 2-length itemsets or longer). This pruning step
yields a significant itemset set cardinality reduction (i.e.
above 50%) for 4 out of 5 GEDs.

B. Result validation

We validated the significance of the results achieved on
two representative gene expression datasets, i.e., BRC-ABL
and T-ALL, which had previously been analyzed in [26] to
perform classification, subtype discovery, and prediction of
outcome in pediatric lymphoblastic leukemia. Specifically,
both datasets relate the treatment of pediatric acute lym-
phoblastic leukemia (ALL). The research goal is to tailor
the intensity of therapies to a patient’s risk of relapse.
Biologists used oligonucleotide microarrays to analyze the
pattern of genes expressed in leukemic blasts from 360
pediatric ALL patients. High-density oligonucleotide arrays
offer the opportunity to examine patterns of gene expression
on a genome scale.

Each dataset consists of a set of expression profiles which
are related to a specific prognostically important leukemia
subtype, i.e., T-ALL, and BRC-ABL. Let us consider the
T-ALL dataset first. Setting a minimum weighted support
threshold wminsup=10, the itemset {RPSA RPS23}, with
weighted support equal to 11.62, is extracted and ranked
first in order of decreasing weighted support. This pattern
represents an established correlation between two human ri-
bosomal protein genes [27]. Similarly, the top-ranked itemset
{BioB-3, SPECC1L, MAGED2} (wsup=0.01), which was
extracted from the BRC dataset, represents a co-expression
between the genes BioB-3, SPECC1L and MAGED2, which
are targeted by the microarray probes. Gene co-expressions
may provide important insights into the biology of the con-
sidered leukemia subgroups. Moreover, within each genetic
subgroup the expression profiles that are highlighted by the
patterns discovered could allow biologists to early identify
those patients that would eventually fail therapies.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel approach to itemset mining
from Gene Expression Datasets (GEDs). The aim of this
work is to ease GED preparation, which commonly requires



TABLE II
GENE EXPRESSION DATASETS AND CHARACTERISTICS OF THE ITEMSETS EXTRACTED

Name Num. of Num. of wminsup Num. of closed Num. of maximal
samples genes Total Len.=1 Len.=2 Len.≥3 Total Len.=1 Len.=2 Len.≥3

BRC-ABL 15 12625 0.007 10 7 1 2 3 1 0 2
T-ALL 42 12625 10 865 13 112 740 78 2 1 75

COLON 62 2000 -0.0002 1998 1993 2 3 1991 1988 0 3
NEUROBLASTOMA 14 22283 0.007 12 10 2 0 8 6 2 0

SRBCT 88 2308 -0.17 2405 2308 81 16 2314 2245 53 16

a not trivial and expert-driven data discretization step. Instead
of discovering traditional itemsets from discretized GEDs,
we propose to consider gene expression values as item
weights, which indicate gene expression intensity within each
sample, and apply a weighted itemset mining algorithm [20]
directly to non-discretized GED. The experimental results
show the applicability and usefulness of the proposed ap-
proach on real GEDs.

Currently, weighted itemset mining algorithms are not
designed for efficiently coping with high-dimensional data.
Since itemset mining from GEDs is challenged by the so-
called “curse of dimensionality” [16], as future work we aim
at studying novel weighted itemset extraction algorithms that
rely on the vertical data format [15] and integrate taxonomy
information (e.g., [28], [29]).
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