
Efficient C Level Hardware Design
for Floating Point Biomedical DSP Applications?

Harry Sidiropoulos†, Efthymia Kazakou†, Christoforos Economakos‡ and George Economakos†, Member, IEEE

Abstract— Recent advances in embedded system design has
increased their interference in different application domains,
where software only solutions have prevailed. This new im-
plementation platform require however quality of results in
terms of speed, power and computational complexity, along
with strict time-to-market schedules. Performance is sought
by utilizing modern Field Programmable Gate Array (FPGA)
devices, offering hundreds of GFLOPs with maximum power
efficiency. Productivity is enforced with High-Level Synthesis
(HLS) or Electronic System Level (ESL) or C-based hard-
ware design methodologies, that offer an efficient abstraction
level to boost-up early prototyping. However, just like the
migration from schematics to Hardware Description Languages
(HDLs) required specific coding styles for efficient hardware
design, C-based hardware design also requires efficient coding
guidelines to be followed. This paper presents a set of such
coding guidelines, and evaluates their efficiency for FPGA
based scientific, floating point arithmetic calculations. As found
through extensive experimentation, the performance and area
optimizations offered by efficient coding can improve the ones
offered by HLS only, even more than 90%. So, while not every
C program can be turned into hardware with the press of
a button, efficient coded C programs can offer a profitable
productivity boost.

I. INTRODUCTION

The electronics design industry has traditionally been
driven by two key factors: improve quality (in terms of
performance, resource usage, power dissipation, etc.) and
reduce time-to-market. The combined satisfaction of both
factors can be achieved by modern design techniques like
High-Level Synthesis (HLS), Electronic System Level (ESL)
design or, in simpler terms, C-based hardware design. HLS,
ESL and C-based hardware design, all more or less involve
the automatic translation of untimed algorithmic descriptions
into Register-Transfer Level (RTL) architectural descriptions,
ready for implementation. As a research topic it started
more than 30 years ago, and can be divided into three
generations [6], with the third, starting in 2000 and lasting
up to now, being more mature, starting from system level
languages and mainly C/C++, offering a different design
paradigm separated from RTL and Hardware Description

?This research has been co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the operational
program “Education and Lifelong Learning” of the National Strategic Ref-
erence Framework (NSRF) - Research Funding Program: ARCHIMEDES
III: Investing in knowledge society through the European Social Fund.

†H. Sidiropoulos, E. Kazakou and G. Economakos are with the School
of Electrical and Computer Engineering, National Technical University
of Athens, Heroon Polytechniou 9, GR-15780 Zografou, Athens, Greece
geconom@microlab.ntua.gr

‡C. Economakos is with the Department of Automation, Technological
Educational Institution of Sterea Ellada, GR34400 Psahna, Evia, Greece
economakos@teihal.gr

Languages (HDLs) and, based on recent advances in Field
Programmable Gate Array (FPGA) technology, highly im-
proving quality of results.

Even though a lot of work was been presented in these
three decades, the main misunderstanding still present is that
C-based design tools can transform software into hardware
in a press-and-go way, with minimal user interaction. This
approach usually leads into low quality results, for which
neither the technology nor the tools are to blame. The
same thing happened during the migration from schematics
to HDLs in hardware design, where specific, efficiency
improving coding styles were introduced. Using the same
approach, C-based hardware design also requires efficient
coding guidelines to be followed, related to specific archi-
tectural optimizations.

This paper presents a set of coding guidelines for C-
based hardware design and evaluates their efficiency for
FPGA based scientific, floating point arithmetic calculations.
With recent advances in FPGA technology, IEEE-754 based
floating point applications are a growing trend. While the
academic world is dealing with different architectures and
optimizations [10], [5], demanding applications involving
biomedical DSP algorithms [1], [3], [8] take advantage of
them to offer quality of results. Comparisons between fixed
and floating point implementations are shown in [7], [9].

The major contributions of this paper are the following.
First, it presents a thorough set of C coding guidelines for
efficient hardware design. These guidelines are applied in an
iterative manner, using a custom script based environment,
along with the architectural optimizations (loop pipelining
and unrolling, memory organization, interface synthesis)
offered by Calypto’s Catapult ESL tool. Through extensive
experimentation with floating point operator implementations
(add/subtract, multiply, divide), it is shown that performance
and area improvements offered by efficient coding can out-
perform the ones offered by architectural style selections
only, even more than 90%. Second, it presents an efficient
and reusable C level hardware implementation of single
precision floating point operators, based on the SoftFloat
open source project [4]. Finally, it supports the claim that
while not every C program can be turned into hardware with
the press of a button, efficient coded C programs can offer
a profitable productivity boost.

II. PROPOSED METHODOLOGY

The design methodology proposed in this paper is a two
step approach, based on the Catapult C-based synthesis
environment. The first step applies algorithmic optimizations

978-1-4799-3163-7/13/$31.00 ©2013 IEEE

to the initially supplied C/C++ source design file. These
optimizations are a set of coding guidelines, inserted or
changed in the initial source with appropriate script files.
Conditional compilation switches are used, so the whole
process is rather interactive and not automated, leaving to
the user the choice of either following or not following
the proposed guidelines. All algorithmic optimizations are
evaluated by performing a synthesis step in Catapult. The
second step applies architectural optimizations, traditionally
found in C-based design tools like loop unrolling, loop
pipelining, memory organization and interface synthesis.
Again, all optimizations are evaluated through synthesis. The
overall methodology supports comparisons between the two
types of optimizations (algorithmic and architectural), which
is one of the key contributions of the paper. Details about
these optimizations are given in the following subsections.

A. Algorithmic Optimizations

A set of algorithmic optimizations have been implemented
in the proposed methodology, as conditionally inserted or
changed code fragments (or even just informative comment
notifications to the user). These fragments originate from the
following rules:

1. Special bit accurate types provided by Catapult, are
used, offering simulation performance and synthesis quality.

2. Input and output signals are inferred by the top level
function parameters and they way they are used.

3. Pass-by-value function parameters require internal reg-
isters while pass-by-reference no.

4. Function output parameters are registered by default.
5. Loop boundaries should be fixed, for decidable execu-

tion time.
6. Conditionals should explicitly be denoted mutually

exclusive, with complete if . . . else clauses, for decidable exe-
cution time. For example, the following two functions, when
only two adders are available, give different implementations
(schedules) when mutually exclusive paths are not explicitly
defined (max x and figure 1, two adders per control step),
and when they are (max n and figure 2, four adders in control
step C1, while eventually only two will be used).

Listing 1. Non-explicitly/explicitly defined mutually exclusive code.

int max_x(int a[4], int b[4], int sela, int selb) {
if (sela) return a[0]+a[1]+a[2]+a[3];
if (selb) return b[0]+b[1]+b[2]+b[3]; }

int max_n(int a[4], int b[4], int sela, int selb) {
int retval=0;
if (sela) retval=a[0]+a[1]+a[2]+a[3];
else if (selb) retval=b[0]+b[1]+b[2]+b[3];
return retval; }

7. Parentheses can be used to force height reduction and
common subexpression elimination.

8. The use of constant multipliers and shifts is much
preferred than general purpose multipliers.

9. Arrays mapped to memories can be optimized for speed,
by widening the memory I/O bitwidth (64 bit ports for 32 bit
operands), allowing more than one parallel memory accesses.

Fig. 1. Non-explicitly defined mutually exclusive schedule.

Fig. 2. Explicitly defined mutually exclusive schedule.

10. The size of memory mapped arrays can be extended
to a power of 2, for simpler controller generation and
performance improvements.

11. Global and static variables always generate registers
but statics are preferred for code compactness.

B. Architectural Optimizations

Architectural optimization are those supported by the
Catapult ESL tool and may be applied through GUI manip-
ulations or script files (used to automate the HLS process).
In brief, they are the following:

1. Loop pipelining, which is controlled by the initiation in-
terval directive. This directive denotes that each loop iteration
will wait a number of control steps before it starts. For a loop
with no data dependencies, all iterations can be performed
in parallel. For a loop with strong data dependencies, each
iteration may be forced to start only after the previous has
completely finished. Usually, feasible solutions lie in the
middle. When one loop iteration partially overlaps another,
Catapult generates a pipelined algorithm implementation.

2. Loop unrolling, which is the duplication of the loop
body a number of times, denoted by the Catapult unrolling
directive. Since each loop iteration takes at least 1 control
step to finish, by duplicating the iteration we investigate
the opportunity to put more operations within this limit and
lower the repetitions.

3. Loop merging, which can combine loops with identi-
cal bounds. Normally, Catapult schedules consecutive loops
found in source code one after the other, with no overlapping.
If the loops however have identical bounds and data depen-
dencies permit it, both loops can be executed in parallel, by
merging their corresponding iterations.

4. Memory map threshold. Catapult can map data objects
either in register files or in memories. Small data objects can
be mapped in register files, with very fast access times but
more complicated control logic while large data objects can
be mapped in memories with slower access times but less
complicated control logic.

5. Internal memory organization. Internal memories in
Catapult have two properties that can affect performance, the

TABLE I
200 MHZ OPERATORS.

Sol. Lat. Thr/put LUTs DFFs DSPs
Adder/Subtractor

no 95 100 2478 657 15
arch 45 30 3128 1233 26

52.63% 70% -26.23% -87.67% -73.33%
alg 15 20 1500 288 7

84.21% 80% 39.47% 56.16% 53.33%
arch 15 5 1306 375 8
+alg 84.21% 95% 47.30% 42.92% 46.67%

66.67% 83.33% 58.25% 69.59% 69.23%
Multiplier

no 65 70 970 362 9
arch 30 20 1135 630 17

53.85% 71.43% -17.01% -74.03% -88.89%
alg 25 30 498 186 5

61.54% 57.14% 48.66% 48.62% 44.44%
arch 20 5 837 587 12
+alg 69.23% 92.86% 13.71% -62.15% -33.33%

33.33% 75% 26.26% 6.83% 29.41%
Divider

no 205 210 3170 569 17
arch 335 325 5100 1328 20

-63.41% -54.76% -60.88% -133.39% -17.65%
alg 65 70 994 275 3

68.29% 66.67% 68.64% 51.67% 82.35%
arch 50 45 1179 435 7
+alg 75.61% 78.57% 62.81% 23.55% 58.82%

85.07% 86.15% 76.88% 67.24% 65%

number of available I/O ports and a number of independent
blocks that they can be split. Both properties, increase the
number of parallel memory accesses in a single control step.

Architectural optimizations can be iteratively applied and
tested before final decisions are made, with the use of
appropriate script files.

III. EXPERIMENTAL RESULTS

A. Operator Implementation

Experimental result with the previously presented method-
ology are given in tables I and II. They report implementation
details for three single precision (32 bit) floating point
operators, an adder/subtractor, a multiplier and a divider.
For all implementations, the largest Virtex-6 Xilinx FPGA
device has been used, the 6VLX760. Moreover, two opera-
tion frequencies have been selected, 200 MHz (table I) and
400 MHz (table II). For all implementations, Catapult was
used to obtain preliminary results through algorithmic and
architectural optimizations and then Precision Synthesis and
Xilinx ISE to get low-level, accurate results.

All implementations start from the corresponding C level
open source software implementation found in the SoftFloat
library [4] and each table presents hardware implementation
details for four solutions in three sections, one for each
operator. The first (solution no) is exactly the SoftFloat
code, without any optimization. The second (solution arch)
is the result of architectural optimizations applied only. The
third (solution alg) is the result of algorithmic optimizations
applied only. Finally, the fourth (solution arch+alg) is the

TABLE II
400 MHZ OPERATORS.

Sol. Lat. Thr/put LUTs DFFs DSPs
Adder/Subtractor

no 102.5 105 2840 880 22
arch 37.5 30 4313 1723 30

63.41% 71.43% -51.87% -95.80% -36.36%
alg 15 17.5 1102 317 6

85.37% 83.33% 61.20% 63.98% 72.73%
arch 15 2.5 1382 990 8
+alg 85.37% 97.62% 51.34% -12.50% 63.64%

60% 91.67% 67.96% 42.54% 73.33%
Multiplier

no 45 47.5 1362 527 10
arch 35 30 2037 854 3

22.22% 36.84% -49.56% -62.05% 70%
alg 20 22.5 509 255 6

55.56% 52.63% 62.63% 51.61% 40%
arch 20 2.5 842 982 7
+alg 55.56% 94.74% 38.18% -86.34% 30%

42.86% 91.67% 58.66% -14.99% -133.33%
Divider

no 177.5 180 3338 667 22
arch 325 312.5 5589 1452 22

-83.10% -73.61% -67.44% -117.69% 0%
alg 52.5 55 984 208 6

70.42% 69.44% 70.52% 68.82% 72.73%
arch 40 40 1265 436 6
+alg 77.46% 77.78% 62.10% 34.63% 72.73%

87.69% 87.20% 77.37% 69.97% 72.73%

result of combined architectural and algorithmic optimiza-
tions applied. For each solution, two performance metrics
are reported, latency and throughput in ns, as well as three
FPGA area metrics, the number of Look-Up Table generators
(LUTs), D-type Flip Flops (DFFs) and special purpose DSP
blocks. In each operator section, rows 1, 2, 4 and 6 show
absolute values, while rows 3, 5 and 7 show improvement
(or overhead) percentages of the corresponding solution
with respect to row 1 (solution no). Finally, row 8 (which
is the most interesting) shows improvement (or overhead)
percentages of the final solution (solution arch+alg), with
respect to row 2 (solution arch). In essence, this is the
comparison between HLS with and without specific C level
coding styles (algorithmic optimizations).

As it can be seen, both tables offer performance improve-
ments in all solutions compared to solution no, except the
divider operator where an unbounded while loop limits the
effectiveness of HLS transformations. This comes along with
area overheads, when architectural optimizations are used
alone (solution arch). While this is an expected result (op-
timizations offer faster hardware requiring more resources),
it does not happen when algorithmic optimizations are used
alone (solution alg). On the contrary, following appropriate
coding guidelines has been proved to offer both performance
and area improvements in all cases. Furthermore, when ar-
chitectural and algorithmic optimizations are combined (so-
lution arch+alg), top performance improvement is achieved,
reaching more than 90% in some cases, with area improve-
ments or overheads in different operators. Overheads are

Fig. 3. Normalized result graph.

however less than the arch solution in all cases, except from
the DFFs in the 400 MHz multiplier. The most interesting
comparison is given in the final row of each section, where
solutions arch (HLS) and arch+alg (HLS+coding guidelines)
are compared. In all cases except the 400 MHz multiplier
both performance and area improvements are reported, reach-
ing again as high as 90% in some cases.

Finally, figure 3, gives a graphical view of all the results
found in tables I and II. It shows normalized average values
for each solution (with no having the value 1) and all
performance and area metrics. As it can be seen, when
algorithmic optimizations are involved (two lower lines),
average improvements are always found. In fact, the alg
solution looks like a baseline drift in the whole plot. The arch
solution is by far the most demanding by average in terms
of area and close to the no solution in terms of performance
(due to the inefficient handling of the unbound while loop
in the divider operator). Overall, this figure gives a clear
image of the advantages of correct C level coding for C-
based hardware design.

B. Application Support

Computed Tomography (CT) scanning uses special x-ray
equipment to generate multiple views of the inside of the
body. These multiple x-ray views are reconstructed into
cross-sectional images of the body, using very computation-
ally intensive algorithms. At the core of any CT scan image
reconstruction is an algorithm called Filtered Backprojection
(FBP). Backprojection is nothing more than adding each
filtered x-ray image data sets contribution into each pixel
of the final image reconstruction. Each x-ray view data set
consists of hundreds of floating point numbers, and there
are hundreds of these data sets. In order to test the proposed
hardware floating point operators of the previous subsection
in a demanding application, the single core backprojection
algorithm found in [2] for a 4096x4096 image size, has
been implemented for the Xilinx Virtex-6 6VLX760 FPGA
running at 200 MHz and using the Catapult ESL tool.

The results found, even preliminary (no low-level imple-
mentation has been performed and non-optimized trigono-
metric function implementations have been selected), show

performance improvements similar to the operator implemen-
tations. Specifically, the no solution has a 1530 ns latency,
1625 ns throughput and 21856 sec total execution time (for
the whole 4096x4096 image), the arch solution 410 ns, 205ns
and 2757 sec, the alg solution 105 ns, 70ns and 941 sec and
the arch+alg 85 ns, 45 ns and 605 sec (area metrics are
not reported because the huge memory requirements did not
allow the design to fit in the FPGA device, prohibiting also
low-level implementation). So, with very fast and efficient
integration opportunities (operator and application code is
written in C), the proposed coding methodology can give
very promising results and an overall 36x performance boost
(comparing no to the arch+alg solution).

IV. CONCLUSIONS

This paper has given experimental results to support the
claim that C based hardware design should not be considered
as a press-and-go procedure that transforms software into
hardware. While modern ESL tools offer the power to trans-
form most C/C++ programs into hardware, it is efficiently
coded programs that can offer the profitable productivity
boost that this technology is promising. Applying specific
coding guidelines to C level software implementations to-
gether with HLS transformations, quality of results compara-
ble with hand written RTL have been presented, thus proving
the maturity of the underlining technology.

REFERENCES

[1] J. Chandran, A. Stojcevski, A. Zayegh, and T. Nguyen. Implementa-
tion of a colorimetric algorithm for portable blood gas analysis. In
22nd International Conference on Microelectronics, pages 411–414.
IEEE, 2010.

[2] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, L. Moore, U. Majum-
dar, and Elton B. Multi- and many-core technologies: Architectures,
programming, algorithms, and applications. chapter Backprojection on
Multicore and GPU Architectures. Chapman-Hall/CRC Press, 2012.

[3] W. C. Fangl, C. C. Choul, T. H. Hungl, K. C. Linl, A. H. Li, Y. C.
Chang, B. K. Hwang, and Y. W. Shau. An efficient and accurate
empirical mode decomposition of the technical design and methods
for biological sound. In Biomedical Circuits and Systems Conference,
pages 320–323. IEEE, 2012.

[4] J. Hauser. Softfloat, a free, high-quality software implementation of
the IEC/IEEE standard for binary floating-point arithmetic. http:
//www.jhauser.us/arithmetic/SoftFloat.html.

[5] K. S. Hemmert and K. D. Underwood. Fast, efficient floating-
point adders and multipliers for FPGAs. ACM Transactions on
Reconfigurable Technology and Systems, 3(3):11:1–11:30, 2010.

[6] G. Martin and G. Smith. High-level synthesis: Past, present, and future.
IEEE Design and Test of Computers, 26(4):18–25, 2009.

[7] B. W. Robinson, D. Hernandez-Garduno, and M. Saquib. Fixed and
floating point analysis of linear predictors for physiological hand
tremor in microsurgery. In International Conference on Acoustics
Speech and Signal Processing, pages 578–581. IEEE, 2010.

[8] F. A. Samman and P. Surapong. SPECTRON: Streaming processor
specific for adaptronic and biomeditronic applications. In International
Conference on Biomedical Engineering. IEEE, 2012.

[9] D. Xiao, L. Wenjun, D. Hui, and W. Guangzhi. Hardware acceleration
for motion tracking system used in image-guided surgery. In 3rd
International Conference on Biomedical Engineering and Informatics,
pages 1498–1502. IEEE, 2010.

[10] L. Zhuo and V. K. Prasanna. Scalable and modular algorithms
for floating-point matrix multiplication on reconfigurable computing
systems. IEEE Transactions on Parallel and Distributed Systems,
18(4):433–448, 2007.

