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Abstract— Parkinsons disease (PD) is neurodegenerative dis-
order with very high prevalence rate occurring mainly among
elderly. One of the most typical symptoms of PD is deterioration
of handwriting that is usually the first manifestation of Parkin-
sons disease. In this study, a new modality - in-air trajectory
during handwriting - is proposed to efficiently diagnose PD.
Experimental results showed that analysis of in-air trajectories
is capable of assessing subtle motor abnormalities that are
connected with PD. Moreover, conjunction of in-air trajectories
with conventional on-surface handwriting allows us to build
predictive model with PD classification accuracy over 80%.
In total, we compute over 600 handwriting features. Then, we
select smaller subset of these features using two feature selection
algorithms: Mann-Whitney U-test filter and relief algorithm,
and map these feature subsets to binary classification response
using support vector machines.

I. INTRODUCTION

Parkinson’s disease (PD) is progressive neurodegenerative
disorder characterized by tremor, riginity, bradykinesia and
loss of postural reflexes. PD usually affects people with the
average age of 60, although 5% to 10% of patients may
develop symptoms even before age 40 [1]. The particular
causes of PD are not known, but there is ongoing research
evaluating genetics, ageing and toxins. From the pathological
point of view there is no objective quantitative method
for clinical diagnosis. It is thought that PD can only be
definitively diagnosed at postmortem that further highlights
the complexities of diagnosis. Therefore there is intensive
effort to develop expert systems and decision support systems
for the assessment and diagnosis of PD.

Previous research has shown that one of the frequent
syndromes of PD is significant vocal impairment such as
dysphonia (impairment in the vocal production of nor-
mal sounds) and dysarthia (problems with normal articu-
lation) [2],[3],[4]. These findings grasped attention of the
speech processing community and motivated further research
on link between PD and impaired speech. Several new and
traditional voice measures has been proposed to discriminate
healthy people from people with PD [5]. Recent studies
for detection of PD with machine learning tools using
acoustic measurement of voice impairment achieved different
levels of PD prediction accuracy [6], [7]; where the latest
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reported results showed as high as 98% overall classification
accuracy [8].

Not only speech, but also handwriting is affected by the
PD [9],[10],[11],[12],[13]. Parkinson’s Disease patients tend
to move more slowly than healthy subjects and reduce move-
ment amplitude when they are required to make movement
with upper extremities. Slowness of movement and reduc-
tions in movement amplitude in clinical observations of PD
patients are called bradykinesia and hypometria, respectively.
Several studies have documented that handwriting provide
numerous features that display statistically significant differ-
ences between healthy subjects and subjects with PD [11].
Statistical significance only is not sufficient, as this does not
provide a complete picture of the extent to which any one
measurement or set of measurements is useful in predicting
and diagnosis of PD. Therefore we propose classification
model for diagnosis of PD and test it on relatively large
dataset consisting of 75 individuals. In addition, minimal
subset of the most predictive features is selected.

The fact, that has been rarely taken into account is,
that hand movement during handwriting a text consist of
two components: an on-surface component, comprising the
movements executed while exerting pressure on the writing
surface, and an in-air component, comprising the movements
performed without touching the writing surface. The amount
of information is similar in both types of trajectories and,
even if they share some information, in-air and on-surface
trajectories appear to be notably non-redundant [14]. In-air
movement has been so far used only for biometric applica-
tion, but here we show that it has meaningful application
also for medical analysis.

The rest of the paper is organized as follows. In Section
2., the database of handwriting samples is introduced and
described, followed by initial feature analysis. Application
of feature selection and machine learning methods to prob-
lem of PD classification is described in Section 3. Finally,
conclusions are drawn in the last section.

II. DATA AND METHODS

A. Parkinson’s Dataset

37 Parkinsonian patients (19 men/18 women) and 38 (20
men/18 women) age matched healthy controls took part in
this study. Dominant hand of all participants was the right
hand. Parkinsonian patients completed the session in the ON
state (under medication by L-DOPA). Mean and standard
deviation of age, Unified Parkinsons Disease Rating Scale-
Part V., score and disease duration are summarized in Table
I.

978-1-4799-3163-7/13/$31.00 ©2013 IEEE



TABLE I
PARKINSON’S HANDWRITING DATASET CHARACTERISTICS

Age UPDRS (part V) Years since diag.
mean std mean std mean std

PD 69.3 10.9 2.27 0.84 8.37 4.8
H 62.4 11.3 - - - -
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Fig. 1. Handwriting sample of PD patient.

Each subject was asked to write sentence in Czech lan-
guage (native language of participants) ”Tramvaj dnes u
nepojede” (The tram won’t go today). Handwritten signals
were acquired using digitizing tablet Intuos 4M (Wacom
technology) in the x-y plane, and in the pressure axis. An
inked writing pen was held in a normal fashion without
constraints to allow for full visual feedback during writing.
As was already mentioned, signals were acquired not only
during movements executed while exerting pressure on the
writing surface, but also during movement performed without
touching the writing surface. Fig. 1 and Fig. 2 show example
of on-surface and in-air trajectories taken from executions of
the sentence performed by PD patient and healthy control,
respectively.

B. Measured feature sets

The recordings starts when the pen touched the surface
of digitizer and finishes when task is completed. Digitazing
tablet captures following dynamic features (time-sequences):
x-coordinate, x(t); y-coordinate,y(t); time stamp, s(t) and
button status, b(t). Button status is binary variable being 0
for pen-up(in-air movement) and 1 for pen-down(on-surface
movement), this means that tablet captures pen movement
while on surface, but also in close proximity of surface - in-
air. The x and y components are segmented into on-surface
and in-air strokes and analyzed in terms of handwriting mea-
sures. The feature calculation stage involves the application
of the traditional and nonstandard measurement methods to
all handwriting signals. Each method produce either a single
value or vector of numbers for each of 75 signals. List of
computed features is provided in Tab. II, where single value
features are denoted as s and vector features are denoted
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Fig. 2. Handwriting sample of healthy control.

as v. Additionally 30 statistical functionals of the vector
features were computed. These include minima, maxima,
range, outlier robust range(percentile 99th - percentile 1st),
geometrical mean, median, mode, mean, standard deviation,
statistical moments (3, 4, 5, 6), trimmed means (5, 10,
20, 30, 40, 50), percentiles(1, 5, 10, 20, 30, 90, 95, 99),
quartiles(25/lower, 75/upper), kurtosis.

C. Feature analysis

Previous processing stages produce together more than
six hundred features for in-air and on-surface movement.
In order to obtain some preliminary insight into statistical
properties of handwriting features we computed Pearson cor-
relation coefficients and mutual information between feature
vectors and associated response. Pearson correlation express
measure of linear dependence between features vectors and
associated response. Mutual information is a measure of the
amount of information shared by two random variable X and
Y . It is defined as:

I(X;Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) · log2
(
p(x, y)

p(x)p(y)

)
(1)

where x and y are possible variable values with a joint prob-
ability distribution function p(x, y) and marginal distribution
functions p(x) and p(y), respectively [16].

Table III sumarizes ten handwriting measures with largest
relevance to response sorted according absolute correlation
coefficient. All correlations are statistically significant (p <
0.05). Eight of ten features are in-air movement related fea-
tures, that give us some initial confirmation of our hypothesis
that in-air features contain information relevant for predicting
PD. The Mann-Whitney test indicated significant differences
(p < 0.05) between control group and PD group for all
features listed in table.

III. CLASSIFICATION RESULTS

A. Selection of candidate feature set for classification

After removing all features that did not pass the Mann-
Whitney U test for significant differences there are still 262



TABLE II
PLEASE WRITE YOUR TABLE CAPTION HERE

Feature (s)/(v) Description

stroke speed v trajectory during stroke divided by stroke duration
speed s trajectory during handwriting divided by handwriting duration
velocity v rate at which the position of a pen changes with time
acceleration v rate at which the velocity of a pen changes with time
jerk v rate at which the acceleration of a pen changes with time
horizontal velocity/acceleration/jerk v velocity/acceleration/jerk in horizontal direction
vertical velocity/acceleration/jerk v velocity/acceleration/jerk in vertical direction
number of changes in velocity direction (NCV) s the mean number of local extrema of velocity [15]
number of changes in acceleration direction (NCA) s the mean number of local extrema of acceleration [15]
relative NCV s NCV relative to writing duration
relative NCA s NCA relative to writing duration
in-air time s time spent in-air during writing
on-surface time s time spent on-surface during writing
normalised in-air time s time spent in-air during writing normalised by whole writing duration

normalised on-surface time s
time spent on-surface during writing normalised by whole
writing duration

in-air/on-surface ration s ratio of time spent in-air/on-surface

TABLE III
DESCRIPTION OF CALCULATED FEATURES

Feature Mutual
Information

Correlation
Coefficient

stroke speed
(on surface, standard dev.) 6.09 -0.388

velocity
(in air, standard dev.) 5.94 -0.387

vert. jerk
(in air, min.) 5.7 0.383

acceleration
(in air, standard dev.) 5.92 -0.38

horz. jerk
(in air, range) 5.72 -0.379

jerk
(in air, standard dev.) 5.96 -0.389

horz. acceleration
(in air, range) 5.81 -0.375

horz. velocity
(in air, range) 5.87 -0.371

horz. velocity
(on surface, quantile 75%) 4.46 -0.37

vert. acceleration
(in air, min.) 5.74 -0.369

candidate features left. Even if many classification algorithms
are fairly robust to the inclusion of potentially irrelevant
features, their performance in speed (due to high dimension-
ality) and predictive accuracy (due to irrelevant information)
may be severely degraded. Feature selection algorithms aim
to choose a small subset of features that ideally is necessary
and sufficient to describe target concept. From many feature
selection algorithms we decided to use Relief algorithm [17],
that has been shown to achieve promising results in problems
similar to ours [8]. Relief is feature weighting algorithm that
relies entirely on statistical analysis and employs only few
heuristics. It selects most of the relevant features even though
only a small number of them is necessary for prediction. In
most cases it does not help with redundant features. Since
we want all relevant features to be included for prediction
even at the cost of higher dimensionality Relief appears to

be promising candidate.

B. Support Vector Machines

The underlying idea of SVM classifiers is to calculate
a maximal margin hyperplane separating two classes of
the data. To learn non-linearly separable functions, the
data are implicitly mapped to a higher dimensional space
by means of a kernel function, where a separating hy-
perplane is found. New samples are classified according
to the side of the hyperplane they belong to. We used
RapidMiner Java implementation of the mySVM with radial
kernel. The parameters kernel gamma γ, penalty parameter
C and convergence epsilon ε were optimized using grid
search of possible values. Specifically, we searched over
the grid (C, γ, ε) defined by the product of the sets C =
[10−5, 10−4, . . . , 103, 104], γ = [10−5, 10−4, . . . , , 102, 103]
and ε = [10−5, 10−4, . . . , 102, 103]. Classifier validation was
conducted using a leave-one-out approach. That is, we left
out the sample of one individual to be used for validation
as if it is an unseen individual. The process was repeated a
total of 50 times, where in each repetition the original dataset
was randomly permuted prior to splitting into training and
testing subsets. Training and testing features were normalized
to have zero mean and a standard deviation of one on a per-
feature basis before classification.

C. Numerical Results

Classification performance for different number of features
was computed for three different scenarios: using only fea-
tures based on in-air movement; using only features extracted
from on-surface movement and using fusion of both groups
of features. By fusion we mean that both feature groups
were merged prior to feature selection. Fig.3 shows pre-
diction accuracy of PD using SVM classifier for increasing
number of features. Features were selected by application
of Relief algorithm. Classification features based on in-air
movement provide classification accuracy similar or higher
then accuracy of features based on on-surface movement.
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Fig. 3. Classification accuracy of SVM for different modalities.

This confirms our initial hypothesis that in-air movement
holds significant information with regards to diagnosis of PD.
The highest classification accuracy, 80.09%, was achieved for
16 features selected from in-air. Merging of both modalities
brings in most of the cases improvement in classification
accuracy indicating amount of non-redundant information in
in-air and on-surface movement. As can be seen from Fig.
3 increasing number of features is not always beneficial.

IV. CONCLUSION

It was shown that proposed scheme can be used for
diagnosis of PD with classification accuracy over 80%.
Besides conventional on-surface handwriting also in-air tra-
jectories during writing were utilized for PD prediction task.
Results indicate that novel in-air features outperform con-
ventional on-surface features in separating healthy controls
from subjects with PD. Conjunction of both modalities to
built predictive model can be used for quantitative recording
for the treating doctor in order to detect and predict long
term changes in the individual disease history. Beside the PD
classification and disease tracking the handwriting analysis
can be also used during an evaluation of modern non-
invasive treatment methods such as high-frequency repetitive
transcranial magnetic stimulation (rTMS), see e.g. [16]. In
our future work, we will analyse new features that can more
efficiently capture tremor, micrographia and other medically
relevant information. We believe that merging handwriting
features with e.g. voice features can further improve diagno-
sis, evaluation and tracking of PD.
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