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Abstract— Genomic annotations with functional controlled
terms, such as the Gene Ontology (GO) ones, are paramount
in modern biology. Yet, they are known to be incomplete, since
the current biological knowledge is far to be definitive. In
this scenario, computational methods that are able to support
and quicken the curation of these annotations can be very
useful. In a previous work, we discussed the benefits of using
the Probabilistic Latent Semantic Analysis algorithm in order
to predict novel GO annotations, compared to some Singular
Value Decomposition (SVD) based approaches. In this paper,
we propose a further enhancement of that method, which
aims at weighting the available associations between genes and
functional terms before using them as input to the predictive
system. The tests that we performed on the annotations of
human genes to GO functional terms showed the efficacy of
our approach.

I. INTRODUCTION

In the recent years we have been witnessing an exponential
growth in biomedical and biomolecular information, with
a large amount of data becoming available for investiga-
tion. Nowadays the focus is not only on generating new
data, but also in storing, managing, querying, searching and
analysing them efficiently and effectively. Several solutions
to express and store the current biomedical knowledge have
been proposed. Among them, those that describe it in a
controlled and computable form are the most valuable. In
particular the associations of a gene (or gene product) with
one or more controlled vocabulary terms, which describe
its functional properties, are paramount to perform their in
silico analysis and to be able to interpret experimental results.
Some consortia maintain a list of controlled annotation terms
and the sets of gene and proteins associated with them; we
refer to those associations as functional annotations. Often,
semantic relations between terms are also provided (i.e.
terms are organized in an ontological structure); the most
widely used ontology for annotating genes and proteins is the
Gene Ontology (GO) [1]. It consists of three sub-ontologies
describing species independent Biological Processes (BP),
Molecular Functions (MF) and Cellular Components (CC).

With the progression of the biomedical knowledge, new
annotations are continuously added or revised, and therefore
annotation databases are usually neither complete nor accu-
rate. In this scenario, methods that are able to improve the
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available annotations, both in coverage and quality, are very
useful. In the recent years several of such approaches have
been proposed [2]; some of them take advantage of data from
heterogeneous sources, implementing a sort of annotation
transfer, while other methods are solely based on previously
available annotations. Among the latter class of them, a
noteworthy method is the one proposed by Draghici et al.
[3], which is based on the Singular Value Decomposition
(SVD). Draghici and colleagues also subsequently showed
how it is possible to improve the performances of the SVD-
based annotation prediction system in term of precision, by
weighting the associations between genes and terms [4].
In 2012, we proposed an annotation prediction algorithm
based on the Probabilistic Latent Semantic Analysis (pLSA)
[5], named pLSAnorm [6], that overcomes the traditional
methods. In this paper, we show how to further improve
pLSAnorm by weighting the associations between genes and
terms.

After this introduction, the paper is organized as follows:
in Section II we describe the pLSA-based predictive system
that we improve; Section III is about the schemes that we
proposed to use to weight the associations between genes and
functional terms; in Section IV we describe the validation
procedure that we used to assess the quality of our method;
the results are reported in Section V; finally, in Section VI
we draw some conclusions.

II. PREDICTIVE SYSTEMS
A. Probabilistic Latent Semantic Analysis

Although pLSA is a very general method, for the sake of
clarity, we introduce it within the field of functional genomic
annotations. Consider a set of genes G and a set of functional
terms F. Let A € {0,1}/¢XIF] be the annotation matrix,
where each row represents a gene of G and each column a
term of F. An entry A(g, f) is equal to 1 if the gene g is
annotated to the term f, or to any of its descendants (whether
the controlled vocabulary is organized into an ontology);
otherwise, it is set to 0.

The aim of the pLSA algorithm is to compute a matrix
X € [0,1])/¢*IFl where each entry X(g, f) provides an
estimation of the probability of the event A(g, f) = 1. The
model on which pLSA is build is named aspect model and
is depicted in Fig. 1. It is a latent variable model for general
co-occurrence data. The core of the model is the set of latent
variables, called ropics, T = {t1,ta,...,t7}.

A multinomial distribution v over the gene set gives the
probability of choosing a gene within the corpus, vy(z) =
P(g,). A set of multinomial distributions A = {41, ...,da},



Fig. 1.

Graphical representation of the aspect model

gives the conditional probability of a topic given a gene, such
that §,(k) = P(tx|g..). Finally, a set of probability distribu-
tions (again multinomial) ® = {¢1,..., ¢} represents for
each topic ¢ and for each functional term f the probability
of choosing the f given ¢, that is ¢¢(f) = P(f]t).

Given an aspect model, the annotation probability between
a gene g and a term f can be interpreted as follows:

1) Select gene g with probability v(g)

2) Select a topic ¢t with probability d,(¢)

3) Select the term f with probability ¢¢(f)

Translating the process into joint probabilities results in
the expression:

X(g, ) = P(9)P(flg) = P(9) Y _ P(f[t)P(tlg) (1)

teT

In pLSA all the distribution probabilities, v and the ones
in the sets A and &, are randomly initialized; then the
Expectation Maximization (EM) [7] algorithm is run in order
to find a set of values to be assigned to those probabilities
that corresponds to a (local) maximum in the log-likelihood
function:

L= Alg,f)logP(g, f) 2)

g€eqG feFr
B. pLSAnorm

In the pLSA variant that we proposed, named pLSAnorm
[6], we introduced two changes: firstly, we consider the
probability distribution v over the genes to be uniform, such
that Vg € G,v(g) = P(g) = 1/|G|.

Secondly, we do not consider the X as the final result,
but we normalize each row of the X matrix with respect
to the row maximum. In practice, we apply the following
normalization procedure:

1) Vg € G, My =mazserX(g, f)

This last step is meant to reduce the bias due to the dif-
ferent number of terms annotated to different genes; indeed,
for each row of the X matrix corresponding to the gene g,
the property > ;c p P(9)P(f|g) = 1 holds. Therefore, given
the fact that the distribution probability ~ is uniform, in a
gene associated with a large number of functional terms,
the entries of the matrix X corresponding to the annotated

terms will have an average value lower than the ones related
to a gene associated with fewer terms. This bias leads to
difficulties in discerning predicted annotations; difficulties
that are overcome with the normalization. Finally, notice that
even if X loses all the statistical properties of the matrix X,
this does not introduce any kind of problem in this particular
application of the latent semantic analysis.

C. Anomaly Correction

Since GO terms are organized into ontologies, when a
gene is annotated to a term describing one of its features,
it must also be annotated to the ancestors of that term. This
is satisfied in the X matrix, but not necessarily in the X
matrix, where the predicted annotation value between a gene
g and a term f could be larger than the predicted annotation
value between g and any of the f ancestors. This leads to
some issues, since the system could predict an annotation
between a gene and a term but not the annotation between
the same gene and an ancestor of that term. In order to
overcome this problem, our framework performs a further
step, named anomaly correction. It consists in updating
parent-term annotation values with the greater annotation
value of their child-terms.

D. Thresholding

Once the X is computed and anomalies corrected, in
order to identify predicted annotations, we binarize the X:
a threshold 7 € [0, 1] is chosen and a gene ¢ is considered
annotated to a certain functional term f if X(g, f) > T
We refer to those couples < g, f > such that A(g,f) =0
and X (g, f) > 7 as annotations predicted (AP); whereas we
refer to those couples having A(g, f) = 1 and X(g, f) < 7
as annotations to be reviewed (AR).

ITIT. WEIGHTING THE ANNOTATIONS

Previous works in the field of Information Retrieval [8]
showed how the performances of a predictive system, in
term of precision and recall, can be improved by moving
from a binary to a real data representation. In our case,
a real data representation can be obtained by weighting
the associations between genes and functional terms. We
defined two criteria for weighting those associations; they are
inspired to the TF-IDF (term-frequency, inverse-document-
frequency) [8], which is a popular technique in text mining
that is often used as weighting factor:

o if a feature term is included in multiple paths to the
ontology root from any of the ontology terms associated
with a given gene, then this feature is more strongly
related to that gene than a feature represented by a term
of the same ontology that is included in less paths;

« if a feature is associated only with a limited number of
genes, it is a good discriminator of the genes; thus, the
annotation to the term representing that feature should
be considered as more important, since it brings a higher
amount of information.



These two criteria can be expressed by using two statistics:
term-frequency (tf) and inverse-gene-frequency (igf). Term-
frequency measures how important an annotation term is to
a certain gene. For each gene g and ontological term f,
tf(g, f) is the number of paths to the ontology root from any
term annotated to g which include f; therefore, it provides
a local weight to each annotation.

Inverse-gene-frequency measures how much important an
annotation to a particular term is; it provides a global weight
decreasing the importance of the most common annotation
terms, usually the ones very close to the ontology root, while
increasing the relevance of the rare ones. For each annotation
term f we can compute:

G|

| genes annotated to f |

igf(f) =1In 3)

These two statistics can be combined in order to build dif-
ferent weighting schemes. Draghici et al. [4] proposed some
of those schemes. Accordingly, we refer to each weighting
schema with a three letter code: the first letter specifies the
local weight used by the schema, the second letter denotes
the used global weight and the last letter indicates which
normalization function is applied. For example, the ATC
schema uses the Augmented local weight (A) as local weight,
igf (T) as global weight and Cosine (C) normalization. The
possible combinations of weights and normalization func-
tions described in Table I lead to nine potential weighting
schemes, but only seven of them are distinct since NTM and
NTC schemes are equivalent to the MTM and MTC schemes,
respectively. In fact, these schemes differ only in the local
weight (N vs. M), which after the M or C normalization
become equal (e.g. in MTM wpjpe = Wipe/Max p{wjoe }; but
Wnioe = Max{Wioe/maz p{wioe}} = 1, thus wyioe, rm =
tf(g, f)/mazp{tf(g, f)} = Wnioc,nTr). Notice also that
our schemes slightly differ from the ones proposed by
Draghici and colleagues in [4] because of the different
formulation of the statistics #f and igf.

Each schema can be applied to the annotation matrix A by:
(a) multiplying every gene annotation by the corresponding
local weight factor and by the global weight factor of the
specific annotation term, and (b) normalizing the new real
valued annotations by the normalization function.

By changing the annotation matrix, the weighting schemes
implicitly change the log-likelihood function, (2) of the
model that the EM algorithm maximizes. The new objective
function is:

g€eG feF

where A, is the weighted annotation matrix. Thus, some
annotations are more relevant than others because of the
larger portion of the likelihood that they affect.

IV. VALIDATION

We tested the effects of the weighting schemes on
pLSAnorm in predicting new GO functional annotations
from a set of available annotations of Homo sapiens genes

to GO terms. We compared the predictions given by the
weighted version of pLSAnorm with the ones given by its
unweighted variant, so as to asses the actual improvement
given by the weighting schemes. Furthermore, we compared
the predictions made on a set of annotations available on
a certain date to the set of the same annotations available
several months later, in order to check how many of those
predictions were confirmed in the newer annotation set.
We retrieved the annotation sets from the Genomic and
Proteomic Data Warehouse (GPDW) [9], which integrates
biological information from several sources; the GPDW is
updated bimonthly and old versions are stored.

In order to measure the quality of an annotation prediction
system we implemented the following procedure:

1) we extracted a set of annotations of Homo sapiens
genes to terms of an ontology from an older version of
the GPDW, we filtered out the less reliable annotations
(i.e. the ones with Inferred from Electronic Annotation
(IEA) evidence, which have been inferred by a compu-
tational tool and have not been verified by any human
curator);

2) by running the predictive algorithm on those annota-
tions, we got a list of AP; for the thresholding, we used
7 = 0.5 as predicted annotation heuristic threshold;

3) we compared the obtained AP with the annotations
present in a newer version of the GPDW and counted
how many AP were confirmed, both with evidence
equal or different from IEA.

In all our tests, we extracted the input set of annotation
(i.e. the A matrix) from the GPDW version of July 2009
and checked the generated predictions against the GPDW
version created 3 years and 10 months later, on May 2013.
We report the dimensions of the input datasets in the upper
part of Table II.

The cardinality of the topic set is the main parameter
of our method and of the pLSA approach. Yet, a general
procedure to estimate the best number of pLSA topics is
still unknown. The more topics are used, the larger the
expressivity of the aspect model is; in contrast, a high number
of topics leads to overfitting problems. In our experiments
we heuristically chose to use the ten percent of the number

TABLE I
WEIGHTING SCHEMES
Code Name Description
Local Weight
N No-Transformation  Vf, g : wioe = tf(g, f)
M Maximum Vf,9: wioe =tf(g, f)/mazxstf(g, f)
A Augmented Vf,g:wpe =05+ 054t/ (g, f)

maxtf(g,f)

Global Weight
Vf + Wglob = lgf(f)

Normalization

T Term Weight

N None Normalization factor is not used
M Maximum wnorm (9, f) = w(g, f)/mazrw(y, f)
C Cosine

Wnorm (g, f) = w(g, f)/\/z:f w(g, f)




TABLE II
TEST RESULTS

Dataset Homo sapiens Homo sapiens Homo sapiens
GO Biological Process GO Molecular Function GO Cellular Component
# genes 7,897 8,579 7,833
# terms 3,523 1,233 583
# annotations 241,825 69,027 107,880
# topics 352 123 58
Weigthing Schema || #AP | #Conf. | %Conf. || #AP | #Conf. | %Conf. || #AP | #Conf. | %Conf.

None 2,076 385 18.54 1,902 208 10.90 594 87 14.64
NTN 1,072 255 23.78 2,232 250 11.20 1,656 645 38.94
NTM 1,079 142 13.16 1,637 197 12.03 1,741 576 33.08
NTC 928 191 20.58 1,546 174 11.25 718 209 29.11
MTN 1,310 185 14.12 1,763 168 9.53 879 371 42.21
ATN 6,719 1,318 19.61 4,221 510 12.08 3,383 1,354 40.02
ATC 7,252 1,087 14.98 4,757 442 9.29 2,329 791 33.96
ATM 7,159 1,109 15.49 4,786 577 12.06 2,551 881 34.54

Sizes of the GO annotation datasets used (table upper part) and prediction test results (table lower part). # AP: number of annotations predicted; # Conf.:
number of predicted annotations found confirmed in the newer GPDW version; % Conf.: percentage of predicted annotations found confirmed in the newer
GPDW version. In bold are those values which indicate an improvement with respect to the unweighted variant.

of annotation terms as number of topics.

V. RESULTS

In the lower part of Table II the prediction test results are
reported; for each weighting schema and dataset we report
the number of AP (#AP) and the number (#Conf.) and
percentage (%Conf.) of the AP that are actually present
in the newer version of the GPDW. The percentages show
how the weighting schemes can improve the precision of a
predictive system based on pLSAnorm in 15 out of 21 cases
(71.43%); furthermore, in 11 of those cases they have also
increased the number of correct predictions.

Nonetheless, not all the schemes induce equal improve-
ment; among them, NTN and NTC are those that seem
to perform better. The schemes ATN, ATC and ATM also
perform well, but by generating a higher amount of predic-
tions above the threshold (compared to the other schemes),
they implicitly produce many not confirmed predictions.
Conversely, the MTN schema decreases the performance of
the predictive system in 2 out of 3 datasets, even if it is the
best schema in the third dataset.

Although these results already show the relevance of the
proposed weighting schemes, they could represent only par-
tially the real improvement given by the weighting schemes;
in fact, some predictions could be correct even if they are not
present in the newer annotation set used for the validation.

VI. CONCLUSIONS

In this paper, we have shown that the proposed weight-
ing schemes can enhance the predicted annotations. These
schemes, associated with probabilistic latent class analysis
methods, are able to predict novel functional annotations
useful to biologists and physicians. In addition, the in-
dependence of such schemes from the organism and the
terminology considered make them a remarkable tool for
improving annotation sets, both in quality and quantity.

Nevertheless, our tests have also underlined difficulties in
the choice of the best weighting schema.

Future works will address advantages and issues related
to applying these tools also to sets of annotations from
other controlled vocabularies different from the GO ones.
In particular, we will explore the benefits of considering
jointly more than one terminology at a time, in order to
take advantage of the potential semantic correlations among
them.

We also plan to further verify the effectiveness of the
proposed weighting schemes by assessing the quality of
the top ranked predictions by means of a literature based
validation procedure.
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