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Abstract— Truncated Singular Value Decomposition (SVD) has
always been a key algorithm in modern machine learning.
Scientists and researchers use this applied mathematics method
in many fields. Despite a long history and prevalence, the issue
of how to choose the best truncation level still remains an
open challenge. In this paper, we describe a new algorithm,
akin a the discrete optimization method, that relies on the
Receiver Operating Characteristics (ROC) Areas Under the
Curve (AUCs) computation. We explore a concrete application
of the algorithm to a bioinformatics problem, i.e. the prediction
of biomolecular annotations. We applied the algorithm to nine
different datasets and the obtained results demostrate the
effectiveness of our technique.

I. INTRODUCTION

Singular Value Decomposion (SVD) is one of the most fa-
mous and widely used machine learning algorithms. Since its
first appearance in 1873 and its final common definition [1],
SVD has shown to be a very powerful applied mathematics
method, and used in many fields, such as signal processing,
natural language processing, robotics, bioinformatics, recom-
mender systems, and many more.
In SVD, an input matrix A is decomposed into the U, Σ,
and VTmatrices. It is then possible to select a truncation
level k ∈ N and use the truncated matrices (Uk, Σk,
VT

k ) to reconstruct the input matrix A. Since the resulting
reconstruction matrix is slightly different from the input one
and shows some semantic relationships between elements, it
can be used to infer new statistical knowledge about input
matrix elements. But how to best choose the SVD truncation
k level remains an open challenge, because this choice can
strongly influence the resulting matrix Ã, and greatly affects
the quality of the obtained solution.
In the past, other scientists have dealt with this issue in
various ways. Frank et al. [2] used the Approximation
Set Coding (ASC) technique to compute the capacity of a
hypothetical channel for a noisy dataset. By using the matrix
A as an input noisy dataset, they took advantage of the
resulting maximum approximation set coding model that has
the highest capacity to choose the best SVD truncation.
Earlier, Vogel [3] chose the best truncation as the one that
leads to the best approximate solution of a Fredhom first
kind integral equation.
In the electronical engineering field, Isam et al. [4] used the
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Truncated SVD to overcome the ill conditioning of a Spec-
trally Efficient Frequency Division Multiplexing (SEFDM)
system. They chose the best SVD truncation as the one that
minimizes the competitive Bit Error Rate (BER) in system
performances. More recently, in the numerical analysis field,
Jbilou et al. [5] decided the best SVD truncation through
vector extrapolation methods while Hansen [6] selected the
optimal truncation index that satisfies the Picard condition.
Lastly, in the bioinformatics field, Khatri and colleagues [7]
used a heuristically fixed value for the SVD truncation, and
so we did in a recent paper [8].
Although these methods are all very good and clever, none of
them provides a general solution to the SVD best truncation
choice problem that is suitable for all the domains. In this
paper, we present a new algorithm based on a discrete
optimization method of the Receiver Operating Characteristic
(ROC) Areas Under the Curves (AUCs). We applied the
algorithm to nine different annotation datasets, and we finally
compared the results produced by our algorithm truncation
with the results obtained by choosing a fixed truncation value
as in [7].

II. PREDICTION OF BIOMOLECULAR ANNOTATIONS

An annotation is the association of a gene (or gene product)
with a feature, that describes it. Despite their biological
significance, available gene annotations present some issues.
As we amply described in [8], they are incomplete by
definition, and the annotation profiles of individual genes
(or gene products) may be lacking and/or erroneous. In this
scenario, computational algorithms able to analyze available
annotation data in order to predict new annotations and to
appraise the relevance of inferred annotations, or generate a
ranked list of new predicted annotations (e.g. to quicken the
curation process) are an excellent contribution to the field
[10]. One of these algorithm is the Truncated SVD [1].

III. SINGULAR VALUE DECOMPOSITION

Let A∈ {0, 1}m×n define the matrix representing all direct
annotations of a specific GO sub-ontology (i.e. CC, MF, BP)
[11] for a given organism. The m rows of A correspond to
genes, while the n columns correspond to GO feature terms
(directly or indirectly) annotated to those genes. Let A denote
a gene-to-feature matrix, where the assignment of its entries
is given by:

A(i, j) =

 1,
If gene i is annotated to feature j
or to any descendant of j.

0, Otherwise.
(1)
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The annotation prediction can be performed by computing
the SVD of the matrix A, which is given by A = U Σ VT

By considering only the most significant rows of U and
columns of VT, the Truncated SVD method is able to
produce a good reduced rank approximation matrix of the
input matrix A. This output matrix Ã contains meaningful
information about the semantic relationships between the
annotations [7]. Therefore, we then use this output matrix
for a comparison to the input matrix. The number r < p of
Σ non-zero singular values is equal to the rank of the matrix
A, where p = min(m;n). For any positive integer k < r, it
is possible to create a matrix Ã, with:

Ã = Uk Σk VT
k (2)

where Uk (VT
k ) is a m × k (n × k) matrix achieved by

retaining the first k columns of U (VT) and Σ is a k × k
diagonal matrix with the k largest singular values along the
diagonal. The matrix Ã is a rank-k approximation of A.
As we extensively explained in [8], this prediction output
matrix Ã can be used for a comparison with the A input
matrix.

A. Input matrix and output matrix comparison

The entries of the matrix Ã are real valued. We introduce a
threshold τ such that, if Ã(i, j) > τ , then gene i is predicted
to be annotated to term j. Subject to the original values
assumed by the matrix A, the following cases may arise:

• A(i, j) = 0 & Ã(i, j) > τ : annotation predicted (AP),
similar to a False Positive (FP)

• A(i, j) = 1 & Ã(i, j) > τ : annotation confirmed (AC),
similar to a True Positive (TP).

• A(i, j) = 0 & Ã(i, j) ≤ τ non existing annotation
confirmed (NAC), similar to a True Negative (TN).

• A(i, j) = 1 & Ã(i, j) ≤ τ annotation to be reviewed
(AR), similar to a False Negative (FN).

As made in [7], we chose the rate of τ as the value that
minimizes the number of presumed errors (APs + ARs).
Since scientists and biologists discover new biomolecolar
annotations every day, and also review and correct the old
ones, the annotations in (current or future) databanks cannot
be used as the true gold standard to appraise the correctness
of our predictions. The only item of information that we
can count on is that newer annotation datasets base better
likelihood of correctness.

IV. RECEIVER OPERATING CHARACTERISTICS (ROC)

A Receiver Operating Characteristic (ROC) curve is a graph-
ical plot which depicts the performance of a binary classifier
system while its discrimination threshold is varied [12]. Our
ROC curves depicts the trade-off between the ACrate and
the APrate, where:

ACrate =
AC

AC +AR
APrate =

AP

AP +NAC
(3)

for all the possible values of τ . Notice that, in statisti-
cal terms, ACrate = Sensitivity and APrate = 1 −
Specificity. Our ROC curves are built with the ACrate on

the y axis and with the APrate on the x axis. In our tests,
we considered only the APrate in the normalized interval
[0, 1]%, in order to evaluate the best predicted annotations
(APs) having the highest likelihood score, because the more
NACs we have, the closer the APrate is to zero.

V. MINIMIZING THE TRUNCATION LEVEL

For the reconstruction of the matrix A, we want to avoid
using the Σ matrix singular values that augment the time
costs but not the quality of the Ã matrix. For example, in
Fig. 1 one may notice that the upper thick red AUC function
is asymptotic after the truncation level 80. This means that all
the SVD reconstructions using a truncation level larger than
80 would have similar Ã matrix reconstruction and results.
On the other hand, the most important Σ matrix singular
values are those present in the initial positions. For example,
in Fig. 1, where the cyan dotted line represents the singular
values ordered by position from the largest to the smallest,
the highest singular values are those in the first ten positions.
This means that, after these first ten values, the further we
go on the x axis, the less important the singular values are
with respect to our matrix reconstruction.
For these reasons, minimizing the truncation, while optimiz-
ing the quality of the predictions, remains an important goal.

VI. MAXIMIZING THE AREA UNDER THE CURVE (AUC)

Since an AC is an annotation present in input and predicted
confirmed in output, and a NAC is an annotation absent in
input and confirmed absent in output, having a high number
of them means having many confirmations. With many ACs
and NACs, the ARrate (in equations (3)) tends to zero and
the ACrate tends to one. This corresponds to having a large
AUC. For these reasons, the best prediction performances
corresponds to larger AUCs, which can be found through a
classical optimization. A computationally inefficient way to

Fig. 1. Illustration of the algorithm behavior for the dataset Gallus
gallus BP. The upper continuous red line represents every AUC value (in
percentage, on the y axis) for any truncation (on the x axis). The vertical
lines represent all the truncations chosen by the algorithm for this dataset;
the numbers indicate the order in which they were computed. The truncation
chosen by the algorithm as best is the dotted line and labeled ”chosen”,
while the maximum AUC is the dotted green line and labeledl ”best”. The
lower dotted cyan plot represents the A matrix singular values.



choose the best truncation for the SVD would be to perform
the SVD with all possible truncations, and then choose the
one that provides the largest AUC. The possible truncation
levels range from 1 to p = min(m,n).
For example, if we considered the datasets shown in the
#g (number of genes) and #f (number of features) columns
of Table I, the number of total SVD’s to execute would
range from p = 131 (Danio rerio CC) to p = 1, 176 (Danio
rerio BP). Executed on a personal computer with Intel Xeon
E5320 1.86Ghz two-processors, 32GB RAM, a Dell PERC
5/i SCSI disk with 256Mb cache, and a Microsoft Windows
Server 2008 R2 64-bit operating system, tests have shown
that a single SVD execution for the most computationally
expensive case of Table I (Danio rerio BP) would need about
23 minutes and 4 seconds. We report time performances for
the analyzed datasets in the Time column of Table I.
Therefore, we developed a novel algorithm to automatically
select the best SVD truncation based on the optimization of
the ACrate vs. APrate ROC curve.

VII. THE ALGORITHM

The SVD best truncation selection algorithm we developed
works as follows. Initially, we make a sampling of all the N
non-null singular values, with constant sample intervals of
size step. The singular values are ordered from the largest to
the smallest. We heuristically chose step as the 10% of all the
non-null singular values of the A matrix (step = 10% ·N ).
For example, in Fig. 1, the step = 25.
For every sampled singular value, we compute the SVD and
its corresponding ROC AUC for ACrate in [0,100]% and
APrate in [0,1]%. If the AUCs of all the three subsequent
samples decrease, or the AUC differences of the last three
singular values are lower than γ = 10%, we stop the
sampling. Otherwise, we keep computing the AUCs for all
the subsequent sampled singular values. For example, in Fig.
1, we compute the AUCs for truncations from the first (the
line with label 1) to the sixth (label 6) sample. Since the
difference between AUC6 and AUC5 is less than 10%, and
the difference between AUC5 and AUC4 is less than 10%,
then we stop. After that, we evaluate which is the singular
value that corresponds to the largest AUC, and denote it as
lbi. We then consider a new sub-interval where we refine
the search of the maximum AUC; this is the range between
the sampled singular value prior to lbi (that is lbi − 1) and
the sampled singular value following lbi (that is lbi+ 1). In
the Fig. 1 example, the local maximum corresponds to the
truncation at the fifth (label 5) singular value. Therefore, the
new sub-interval spans from the fourth (label 4) to the sixth
(label 6) truncation computed.
We iterate the search in the new sub-interval, by using a new
sampling interval equal to half of the previous (step = 13
in Fig. 1). We continue this iteration until in the considered
sub-interval there are no more singular values to compute
a new AUC, or until the maximum number of sub-interval
computation (numZoom = 4, heuristically set) is reached,
or until the two new truncations computed generate AUCs
smaller than the maximum AUC previously computed. This

is the case of the Fig. 1 example, where the AUC8 and the
AUC9 are smaller than previously computed AUC7.
Once the search is finished, we take as optimal truncation
the one that corresponds to the maximum AUC among those
computed during the search. In the Fig. 1 example, the
seventh (label 7) truncation computed is the optimal.

VIII. EXPERIMENTS AND RESULTS

We tested the effectiveness and efficiency of our algorithms
on nine datasets, dowloaded from the GPDW data warehouse
[13]. The nine different annotation datasets are made by
genes of three different organisms (Bos taurus (Bt); Danio
rerio (Dr); Gallus gallus (Gg)) and their Gene Ontolgy (GO)
annotated terms regarding the biological function features
(Cellular Component: CC; Molecular Function: MF; Biolog-
ical Process: BP). In Table I, we report the results obtained
in applying the algorithm to our nine considered datasets. In
the Area Diff% column, we show the percentage difference
between the AUC computed with the truncation chosen by
the algorithm, and the maximum AUC among all the possible
truncation. In the #AUCs column, we report the number of
AUCs computed before stopping the algorithm.
As a paradigmatic example, we present the results for an
indicative case, for the Gallus gallus BP dataset in Fig. 1. One
may notice how the best truncation chosen by the algorithm
appears near to the global best truncation, that corresponds
to the global maximum AUC.
We reported the dimensions of the nine datasets and the
results of our algorithm performance in Table I. One can
notice that in two cases (Danio rerio BP and Gallus gallus
MF) the algorithm selects the truncation that corresponds to
the overall maximum AUC as the global best. In many other
cases, the difference between the chosen AUC and the best
one is very small: less than 1% (Bos taurus MF, Bos taurus
BP, Danio rerio MF, Gallus gallus CC). In two cases where
the chosen area is not very close from the best (Bos taurus
CC and Gallus gallus BP), this is balanced by a smaller

TABLE I
NUMBER OF GENES (#gs), FEATURES (#fs) AND ANNOTATIONS (#as) IN

THE JULY 2009 GPDW VERSION. PERCENTAGE DIFFERENCE BETWEEN

THE BEST AREA CHOSEN BY THE ALGORITHM AND THE MAXIMUM

AREA OF THE DATASET (Area Diff%), NUMBER OF SVDS AND AUCS

COMPUTED TO SELECT THE GLOBAL BEST AREA (#AUCs), AVERAGE

TIME FOR AN SVD AND AUC COMPUTATION (Time).

dataset #gs #fs #as Area #AUCs Time (ms)Diff%
Bt CC 497 234 7,658 2.59 6 71,445
Bt MF 234 422 3,574 0.59 10 18,232
Bt BP 512 1,023 18,167 0.93 11 57,416
Dr CC 430 131 4,844 1.18 11 16,653
Dr MF 699 261 4,861 0.24 10 23,693
Dr BP 1,528 1,176 38,624 0.00 10 1,380,400

Gg CC 260 309 3,450 0.33 12 18,531
Gg MF 148 225 1,944 0.00 12 86,679
Gg BP 478 509 8,731 1.06 9 162,730



number of iterations (#AUCs column in Table I). Except for
one dataset (Danio rerio CC), where we have many iterations
and the penultimate largest area, all the dataset tested show
that our algorithm hit the target of choosing an AUC near to
the maximum one, and maximized the truncation value.
Once we computed the best truncations with our algorithm,
we ran our prediction software and tested its performance,
in terms of correctness of the annotations predicted. We also
performed the prediction by using the fixed SVD truncation
used by Khatri et al. in [7], and compared these results.
Additionally, we ran our analysis prediction software on the
GPDW November 2009 datasets, and then we compared
our predictions with the March 2013 version of the same
datasets. We show the results of this comparison in Table II.
Comparing the results of the prediction made by using
our best truncation in the uppert part of Table II with the
results come from the use of a fixed truncation equal to
10% ·min(#genes,#features) in the lower part of Table
II, one can notice that our method outperforms the other
one. Although the prediction with the fixed truncation pro-
duces more annotations, the percentages of the annotations
predicted and found confirmed in the new version of the
database of the upper part of Table II (upDb% column) are
higher than the corresponding percentages the table lower
part, in five cases on nine, while in the other cases they are

TABLE II
COMPARISON BETWEEN THE RESULTS OF THE SVD PREDICTION BY

USING OUR ALGORITHM FOR BEST TRUNCATION SELECTION (UPPER

TABLE), AND THE RESULTS BY USING A FIXED TRUNCATION USED IN

THE [7] PAPER (LOWER TABLE). THE τ THRESHOLD MINIMIZES THE

SUM APs+ARs. APs: THE NUMBER OF ANNOTATIONS PREDICTED;
anDb: THE NUMBER AND PERCENTAGE OF PREDICTED ANNOTATIONS

FOUND IN THE NOVEMBER 2009 GPDW VERSION; IEA anDb%:
PERCENTAGE OF IEAS AMONG THESE ANNOTATIONS; upDb ( upDb%):

NUMBER OF PREDICTED ANNOTATIONS FOUND IN THE MARCH 2013
UPDATED DB (PERCENTAGE OVER THE PREDICTED ONES).

dataset k τ APs IEA upDb upDb%anDb anDb%
k chosen by our algorithm

Bt CC 25 0.45 57 2 100 4 7.02
Bt MF 74 0.46 12 1 100 1 8.33
Bt BP 126 0.44 27 1 100 2 7.41
Dr CC 55 0.48 3 0 0
Dr MF 88 0.50 21 1 100 3 14.29
Dr BP 189 0.44 143 0 1 0.70
Gg CC 47 0.49 0 0 0
Gg MF 25 0.49 11 1 100 0
Gg BP 112 0.44 7 0 0

k = 10% ·min(#gene, #features)
Bt CC 23 0.42 84 2 100 4 4.76
Bt MF 23 0.37 161 6 100 4 2.48
Bt BP 51 0.40 230 1 100 4 1.74
Dr CC 13 0.52 21 0 0
Dr MF 26 0.50 40 1 100 2 5.00
Dr BP 117 0.45 82 0 0
Gg CC 26 0.45 30 1 100 0
Gg MF 15 0.43 33 1 100 0
Gg BP 48 0.43 50 0 0

the same (no annotation found). Anyway, since the databanks
are always incomplete, many annotations predicted by our
program might be correct but not yet added to the available
databases.

IX. CONCLUSIONS

In this paper we presented a general discrete optimization
algorithm for the choice of the best truncation for the
Truncated SVD method, and applied it to the prediction
of biomolecular annotations. Our optimization algorithm
reaches the goal to find the truncation that optimizes the
AUC of the ROC curve. Our tests shown that our algorithm
chooses truncation levels that, besides being very near to the
general maximum AUC and with few iterations, outperforms
the predictions made with the heuristically fixed level chosen
in [7]. Future works will address benefits and disadvantages
related to the annotation prediction by considering all the GO
ontologies collectively instead of independently, in order to
exploit the latent correlations existing between them, and
additional work will also be related to a new validation
procedure based on the check of the presence the predicted
annotations in the literature.
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