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Abstract—Gene regulatory networks (GRN) inference from
gene expression data is an important problem in systems biology
field, in which the main goal is to comprehend the global
molecular mechanisms underlying diseases for the development
of medical treatments and drugs. This problem involves the
estimation of the gene dependencies and the regulatory functions
governing these interactions to provide a model that explains the
dataset (usually obtained from gene expression data) on which
the estimation relies. In this work a method based on genetic
algorithms to infer gene networks is proposed. The main idea
behind the method consists in applying one genetic algorithm for
each gene independently, instead of applying a unique genetic
algorithm to determine the whole network as usually done in
the literature. Besides, we propose the application of a network
inference method to generate the initial populations to serve as
more promising starting points for the genetic algorithms than
random populations. To guide the genetic algorithms, we propose
the use of Akaike information criterion (AIC) as fitness function.
Results obtained from inference of artificial Boolean networks
show that AIC correlates very well with popular topological
similarity metrics even in cases with small number of samples.
Besides, the benefit of applying one genetic algorithm per gene
starting from initial populations defined by a network inference
technique is evident according to the results.

I. INTRODUCTION

The vital maintenance of an organism depends on several
metabolic pathways regulated by gene expression networks.
Nowadays, the gene regulatory networks (GRN) inference
problem has increasingly attracted the attention of researchers,
due to the huge volume of gene expression data generated
for many species and specific conditions. Nevertheless, the
inference of gene regulatory networks (GRN) is an open
problem [25]. A common challenge presented by gene expres-
sion analysis is the large number of genes (variables) with
just a few dozens of samples (experiments), which demands
the development of statistical and computational techniques
to alleviate the estimation error committed in the presence
of small number of samples and high dimensionality. Other
factors that contribute to the difficulty of this task are asso-
ciated to the large degree of imprecision inherent to the gene
expression measurements (noisy data), the large complexity
of inter-relationship networks, and lack of prior information
about many biological organisms.

There are essentially two main approaches to model the
complex networks of gene interactions: continuous and dis-
crete. The continuous approach relies on differential equations
to reach a quantitative detailed model of biochemical networks

with cellular functions [18]. On the other hand, the discrete
approach is based on the construction of qualitative discrete
models of gene interactions, including the models based on
graphs such as Bayesian Networks [13], Boolean Networks
[20] and the Probabilistic Boolean Networks [32]. Although
the continuous approaches offer a detailed comprehension
of the considered system, they require a significant number
of samples and information about the characteristics of the
reactions [19]. In its turn, the discrete approaches can be
easily modeled computationally and have been successfully
employed for modeling and simulation of many biological
process networks [14], [25], [29].

In the context of discrete models, Boolean Networks rep-
resent an appropriate model to generalize and capture the
global bahavior of biological systems, especially when the
number of experiments (samples) available is limited and the
dimensionality (number of variables) is very large [20]. The
main disadvantage of such model is the loss of information
as a consequence of the data quantization. However, the
data quantization is exactly what makes the Boolean model
simpler [16]. Many methods were proposed to infer gene
networks modeled as Boolean Networks [3], [1], [21], [27].
Such methods perform an exhaustive search over the state
transition matrix of discretized gene expression data.

The inference of networks from gene expression data is an
inverse and ill-posed problem, in the sense that many solutions
may be capable to explain the observed data, especially when
the number of samples is small. This makes the problem quite
complex, since the number of samples is limited and the data is
subject to experimental noises. The inference process requires
a good modeling framework combined with very well designed
search or learning procedures. In recent years, evolutionary
algorithms have been employed in a multitude of situations
that present a very large solution space [28]. For instance,
genetic algorithms have been applied to learn the network
structure of regulatory pathways of continuous models [30].
Recently, Mendoza et al [26] proposed a genetic algorithm to
infer GRNs, modeled as Boolean networks, from experimental
data. In this work, the topologies are codified by integers
representing the indices of the predictors for each gene in
which the maximum number of predictors per gene needs
to be determined a priori, the initial population is randomly
generated with the restriction of one predictor per gene, and the
fitness function is based on the Tsallis entropy with a penalty
factor that needs to be appropriately tuned to achieve networks
with good balance between complexity (number of links) and
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consistency with the data.

In this paper we propose a GRN inference method based on
genetic algorithms, where it is applied one genetic algorithm
per gene independently with the aim to obtain the best predic-
tor genes for each target gene. Such strategy is different from
the applied by existing methods for the same purpose, which
employ a unique genetic algorithm to infer the whole network.
Another strategy proposed here consists on generating the
initial population based on existing GRN inference methods
(for instance, the probabilistic gene networks approach pro-
posed in [6]) to obtain starting points more promising than
those provided by randomly generated initial population, as
usually done by genetic algorithms proposed in the literature.
Besides, we adopt the Akaike information criterion (AIC) as
fitness function, which is based on likelihood of the dataset be
generated by the network, embedding a factor to penalize the
model complexity, which increases with the dimensionality of
the predictor subsets [2], [9].

With the objective of analysing the results of the pro-
posed method, experiments involving artificial Boolean net-
works generated by complex network models, such as the
random model Erdös-Rényi (ER) [12] and the scale-free model
Barabási-Albert (BA) [5], were performed. Moreover, the
proposed method was compared to a recent technique proposed
by Mendoza et al, which is also based on genetic algorithm
to infer gene networks [26].

This manuscript is organized as follows. Next section
presents the Boolean Networks model foundations, including
the Probabilistic Boolean Networks model as its stochastic
version. Section III discusses the Probabilistic Gene Net-
works (PGN) approach. Section IV describes the proposed
GA method for GRN inference. Some experimental results are
discussed in Section V. This text is concluded in Section VI.

II. BOOLEAN NETWORKS

A Boolean network (BN) B = (V,F) of n vari-
ables (genes) is defined by a set of n nodes V =
{g1, ..., gn}, gi ∈ {0, 1}, and a vector of n Boolean functions
F = (f1, f2, ..., fn), fi : {0, 1}n → {0, 1}. Each node gi
represents the state or expression of the gene i and each
function fi is a predictor function of gi. The states of all
genes in B = (V,F) are synchronously updated in each step
(or timepoint t) according to their predictor functions, i.e.,
gi(t + 1) = fi(g1(t), ..., gn(t)) = Fi(g(t)). In other words,
the next state g(t+1) is obtained by application of the vector
F of n functions to the current state g(t). The vector F is the
transition function of the Boolean network B = (V,F).

As each component fi of F is a function that can depend
of all n variables at most, the number of possible functions
for a given gene i is 22

n

, since the number of possible input
values is 2n where each input leads to one of the two possible
outputs (0 or 1). Hence, the number of possible transition
functions F (i.e., the number of different Boolean networks
of size n) is 2n(2

n), which is the total search space of the
inference problem. Of course in most scenarios the network
topologies are sparse, meaning that each variable depends on
just a small fraction of other variables. Biological systems such
as GRNs compose one of these scenarios [15].

Thus, the main concern regarding GRN inference is to
find the correct network topology based on experimental data.
Even considering that each gene depends on a fixed small
number of genes (predictors), e.g. 2, the number of possible
topologies is

(
n
2

)n
, which is still huge even for n ≤ 10.

Besides, although the average number of predictors per gene
is small, such number varies greatly from gene to gene. In
fact, some genes may act as hubs, possessing prominently
large number of predictors [5]. This feature makes the GRN
inference problem even more challenging, requiring very well
designed methods to address it.

A. Probabilistic Boolean Networks

The cell is an open system prone to receive external stimuli.
Depending on the external conditions in a given time instant,
the cell can change its dynamics [31]. Thus, to embed a
stochastic character in the Boolean networks, the Probabilistic
Boolean Networks model (PBN) has been proposed [32]. This
model considers genes as binary values which are described
by a set of Boolean predictor functions, where each function
has a specific probability to be applied. Consequently, a BN
is a specific type of PBN where each gene presents a unique
Boolean predictor function with probability equal to 1.

Normally, the quasi-determinism inherent in biological sys-
tems can be modeled by PBN simply assigning, for each gene,
a probability close to 1 to a certain function and probabilities
close to 0 to the remaining functions. The functions with very
small probabilities can simulate perturbations (external stimuli)
or changes between biological contexts [8], [11].

III. PROBABILISTIC GENE NETWORKS

The expression profile of a given target gene in a GRN
usually is determined by the expression profile of a subset
of genes called predictors. To search for the gene subset
(predictors), feature selection methods can be applied to select
the subset with the largest information content about the
values of a target gene. In particular, the probabilistic gene
networks (PGN) approach [6], [23], [24], [22] follows the
feature selection principle: for each target gene, it is performed
a search for the predictor subset that best describes the target
behavior according to a criterion function which evaluates the
prediction quality based on gene expression signals. Barrera et
al discuss this approach in the context of the analysis of dy-
namic expression signals of Plasmodium falciparum cell cycle
(one of the malaria agents), providing interesting biological
results [6]. Each target gene in a given time instant depends
only on its predictor values in the previous timepoint, since
this approach assumes that the temporal samples follow a first
order Markov chain. The transition function is homogeneous
(the function does not change with time), almost deterministic
(from any state, there exists a preferential state to which
the system transits at the next timepoint) and conditionally
independent (the value of a given gene depends only on the
values of its predictors). These assumptions are important
simplifications due to the limited number of samples typically
available in real data. All GRN inference methods discussed
from now on, including our proposed method based on genetic
algorithms (Section IV), follow the axioms of the PGN model.
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IV. GENETIC ALGORITHMS FOR GRN INFERENCE

A. Overview

Letting n be the number of genes present in the network,
the problem of the search for the ideal topology presents a
super-exponential search space (2n×n, since each adjacency
matrix cell is a binary value, indicating presence or absence
of an edge between two genes). One of the advantages of
following the PGN model (Section III) is due to the fact that
each gene depends only on its predictors. Thus, it is possible
to divide the problem in n feature selection subproblems (one
subproblem for each gene), where the search space of each
subproblem is exponential (2n possible candidate predictor
sets). In this way, since the exhaustive search is still unfea-
sible even for a moderate number of genes, approximation
algorithms such as genetic algorithms are required.

Here we propose a method to infer gene interaction net-
works based on genetic algorithms. The method takes as input
the gene expression data and returns a network topology which
tries to satisfactorily describe the data. Once retrieved the
network topology, the logical dependencies among genes can
be derived from the expression data. In this work, the Boolean
Networks (BN) model was adopted, which follows the PGN
axioms.

The procedure of the proposed method is outlined in
Figure 1. It consists on dividing the gene network inference
in n genetic algorithms (one for each gene), where n is the
number of genes in the network. First, for a particular gene,
an initial population of predictor sets is inferred through the
application of feature selection by exhaustive search guided
by mutual information (from now on, such method is called
Exhaustive Search by Mutual Information - ESMI) and follows
the PGN axioms (Section IV-B). Next, these predictor sets
are codified and taken as input by the genetic algorithms
(Section IV-C). These algorithms are guided by the Akaike
Information Criterion (AIC), which evaluates the predictor set
of each gene based on the input data (Section IV-D). Finally,
the genetic operators crossover and mutation are applied to
the predictor sets of the network genes to produce the next
populations (generations), one new population for each gene
(Sections IV-E and IV-F). Each generation is submitted to a
new round of evaluation, crossover and mutation iteratively
until a stop criterion be satisfied, obtaining the final popu-
lations. For each generation, the best chromosome (with the
least AIC) of the current generation is compared with the best
chromosome obtained so far. If the first is the best, then it is
considered as comparison reference for the next generations.
Thus, the best chromosome (predictor subset) obtained for
each gene composes the final network. The following sections
detail the aspects of the proposed method.

B. Initial populations generation

Usually genetic algorithms start with a randomly generated
initial population. In [26], for instance, each gene starts with
only one randomly chosen predictor, forming an initial network
that composes the random initial population of networks. Here,
we propose to obtain the initial population of predictor subsets
for each gene by appling a feature selection method. The
subsets with the higest information content about the values
of a given gene compose its initial population. We apply the

ESMI method in which all predictor subsets of fixed size k
previously defined are examinated and ranked according to
their mutual information with the target gene,

After the ranking, the best c predictor subsets compose
the initial population of the target gene (chromosomes). Such
process is repeated for every gene, thus creating the initial
populations of the chromosomes of all genetic algorithm
processes (one per gene).

C. Chromosomal codification

In genetic algorithms, chromosomes are representations of
possible solutions of the search problem. A solution to the
GRN inference problem can be represented by a graph of
dependences among genes and their logical rules. Following
the genetic algorithm approach described in [26], GRNs are
modeled as Boolean networks in which each gene is expressed
or not (1 or 0) based on a Boolean function of other genes
which may include the target itself (self-loops). The chromo-
somes need to contain information about the graph topology,
which can be codified as adjacency matrix, adjacency vector or
predictor sets. Once the topology is defined, the logical rules
can be estimated directly from the data, which can be done
by prediction (classification) error minimization (likelihood
maximization).

Nevertheless, unlike the method proposed in [26], our
proposed technique consists of applying isolated genetic al-
gorithms (one for each gene). For this, the chromosome
representation is given by a set of indices, in which each
index corresponds to a given predictor gene. By using this
representation, a target gene in a given generation contains
a collection of predicor sets (chromosomes) composing its
current population. More formally, let PSi be a predictor set
(chromosome) of gene i. If the element j ∈ PSi, then gene i
depends on gene j. Otherwise (j /∈ PSi), the gene i does not
depend on gene j. As a consequence of this representation,
there is no restriction on the number of predictors that can be
associated to a certain target gene.

D. Fitness function

A fitness function is needed to evaluate the current popula-
tions of solutions and guide the genetic algorithms to approx-
imately optimal solutions. For each solution, it is assigned a
fitness value indicating the capability of the solution to survive,
reproduce and maintain its genetic characteristics along the
next generations. In this case each predictor set needs to
be evaluated based on how well it explains the considered
gene expression profile. We adopted the Akaike Information
Criterion (AIC) [2] as fitness function. AIC estimates the
probability of the gene values to be explained by a given
predictor set based on the data, including a factor to penalize
the sets of larger dimensionality (the number of parameters
to be estimated increases with the number of predictors). AIC
offers a compromise between the complexity and the model
fitting. Formally, the AIC for a given target gene Gi and a
predictor set Xi is defined by Equation 1:

AIC(Gi,Xi) = 2K(Xi)− 2ln(L(Gi,Xi)) (1)
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Fig. 1. Outline of the proposed method for gene networks inference. In this example, n = 5.

where K is the number of parameters present in the statistical
model, and L(Gi,Xi) is the maximum likelihood function for
the gene Gi and the predictor set Xi. Given m samples and
the target gene Gi = {0, 1} which depends on the subset of
predictors Xi = {0, 1}ki , where ki is the number of predictors
of the gene Gi, L can be estimated from data as described in
Equation 2:

L(Gi,Xi) =
∏

xi∈{0,1}ki

∏

gi∈{0,1}
P (gi|xi)

mP (xi,gi) (2)

where P (gi|xi) is the conditional probability of Gi = gi given
Xi = xi, and P (xi, gi) is the joint probability of Xi = xi and
Gi = gi. These probabilities are estimated from the data.

Besides, K(Xi) is the number of statistical parameters to
be estimated for gene Gi, given by Equation 3:

K(Xi) = 21+ki (3)

i.e., given that a gene Gi depends on ki binary predictors,
there are 2ki possible values for these predictors. As Gi is
binary, two conditional probabilities need to be estimated for
each possible value (instance) which the predictors can assume,
one for Gi = 0 and another for Gi = 1. Thus, the number of
statistical parameters to be estimated is 2× 2ki = 21+ki .

The best feature subsets tend to have smaller AIC values,
since a larger number of predictors implies in a greater K (the
risk of overfitting increases), while larger values of L indicate
a better explanation of the data by the predictor set.

As the inferred network is obtained by the composition of
the best subset (chromosome) of each gene obtained so far,
the AIC of a network can be obtained by

∑
i AIC(Gi,X

∗
i ),

where X∗
i is the best subset obtained for the gene Gi so far.

E. Crossover

The crossover phase should simulate the natural selection
mechanism, in which the most adapted parents according to
the chosen fitness function tend to generate more children,
but allowing least capable parents to generate descendants as
well, since individuals with small fitness may have peculiar
genetic characteristics which lead to produce individuals with
better solutions for a given problem. Crossover presents two
main steps: selection and recombination. In our proposed
technique for GRN inference, we adopted the roulette wheel
method for selection of the individuals, where each individual
(chromosome) is assigned a slice proportional to its fitness.
Once the individuals are selected, they exchange parts of their
chromosomes by a recombination operation.

1) Selection: In selection step, a subset of individuals
(chromosomes) of a given population is chosen to reproduce,
generating the next population. We adopted the roulette wheel
method, in which the probability of a chromosome to be
chosen is inversely proportional to its AIC. In this way,
the best chromosomes tend to compose the majority of the
individuals to be recombined. The roulette requires the sum of
of AIC inverses, using this value to determine the probability
of each individual to be chosen, as in Equation 4:

4



R(i) =
1

AICi∑n
i=1

1
AICi

(4)

2) Recombination: In recombination phase, the selected
individuals form random pairs. Each pair recombines their
genetic information to generate two children which will com-
pose the next generation of individuals. In the present work,
the recombination of a pair of individuals (parents) starts
from the creation of a new set resulting from the union with
duplicates of their indices. Then, the elements of this union
are shuffled, generating a vector containing these elements in
arbitrary order. Finally, one of the vector positions is randomly
chosen as one-point cut, dividing the vector in two, one for
each child. If there are elements (predictors) duplicated for a
given child, one of these predictors is transferred to the other
child.

F. Mutation

Aiming to escape from the local minimum solutions, mu-
tation is an important genetic algorithm operation to change
some punctual features of the individuals. Since the pro-
posed method applies one genetic algorithm for each gene,
where a gene presents a population composed by predictor
subsets (chromosomes), a small percentage of these chro-
mosomes should be changed. The number of chromosomes
to be changed is calculated in each interaction according
to a decreasing linear function which goes from maxmut

(maximum number of mutated chromosomes) to 0 in 100
iteractions (generations). The variable it indicates the current
iteraction. When r repetitions of the best AIC obtained are
reached (convergence), it is resetted to 0, consequently making
MC (number of chromosomes to be mutated) to be resetted
to maxmut. MC is given by Equation 5:

MC = max{0, � (100− it)×maxmut

100
�} (5)

Once determined the number of chromosomes to be mu-
tated in a certain iteraction, the chromosomes are randomly
chosen. Letting C be one of the chromosomes selected to
be mutated, in a traditional mutation, any gene Gi from the
network would be randomly chosen, either to be included
to C if Gi /∈ C, or to be excluded from C otherwise
(GI ∈ C). The problem with this mutation strategy is that
the number of predictors of a chromosome is usually much
smaller than the number of genes in the network, which implies
that the majority of mutations include the randomly chosen
gene instead of excluding it, inducing a degree increase in
almost all chromosomes. In order to avoid such undesirable
behavior, we propose a strategy based on genes swapping.
That is, if Gi ∈ C, then Gi will be swapped by another
Gj /∈ C randomly chosen. Otherwise (Gi /∈ C), it replaces
one of the genes Gj ∈ C randomly chosen. Only one gene of
C is swapped by another gene, i.e., only one index of C is
changed at a time.

V. EXPERIMENTAL RESULTS

In this section we perform four sets of experiments: (A)
evaluation of AIC as fitness function to guide the genetic

algorithms (GA); (B) assessment of the benefits of generating
the initial populations with the ESMI method as discussed
in Section III; (C) comparison of the proposed method (GAs
starting from random initial populations and from initial pop-
ulations generated by ESMI method) with the ESMI method
itself; (D) comparison involving the Mendoza et al method
[26].

All experiments were performed with simulated data. We
generated random networks according to two topological mod-
els: the random model Erdös-Renyi (ER) and the scale-free
model Barabási-Albert (BA). Both network models require
the average degree (number of preditors) parameter 〈k〉. In
case of scale-free networks another parameter γ is required
as decay factor of the power-law. We fix γ = 2.5, since
the degree distribution of the elements of biological networks
usually follows a power-law with 2 < γ < 3 [17], [4], [22].
The network dynamics follows the PBN model: a small set
of Boolean functions is assigned to each gene, where each
function has a pre-defined probability of being applied. Such
functions are randomly defined from the set of all k-variable
Boolean functions, where k is the number of predictors of
a given gene. At each timestep, one function from this set
is selected to generate the considered gene value at the next
instant, according to a given probability distribution (which we
call “PBN functions probability distribution”).

The parameter settings of the experiments are shown in
Table I. The purpose was to analyze situations in which the
number of data samples (timepoints) is very limited, since such
situations are typical in real datasets.

TABLE I. PARAMETERS USED IN THE EXPERIMENTS.

Network topology models {ER; BA}
Groundtruth network size (number of genes) 100
Average number of predictors (groundtruth) 3
Average number of predictors (initial populations) 3
Number of regulatory functions per gene (PBN) 3
PBN functions probability distribution (0.98, 0.01, 0.01)
Number of samples (m) {30; 60}
Number of GA iteractions (generations) 1000
Populations size 100
Minimum probability of each chromosome to be mutated 0
Maximum probability of each chromosome to be mutated 0.1
Convergence criterion for mutation (r) 10

In order to evaluate the results, we compare the inferred
networks to the groundtruths using two topological similarities
based on the number of true/false positives and true/false
negatives: positive prediction value (PPV) and similarity (SIM)
[10]. A true-positive edge is a directed edge present in both
groundtruth and inferred networks, and a true-negative edge
is a directed edge that is absent in both networks. Let TP ,
TN , FP and FN be the numbers of true-positive, true-
negative, false-positive and false-negative edges, respectively.
PPV is defined by TP/(TP + FP ), and SIM is defined by√
TP/(TP + FN)× TN/(TN + FP ).

For each combination of topological model, network size,
and sample size, we generated 10 different groundtruth net-
works and then performed 10 simulations (100 datasets total).
To account for random effects in GA execution, we performed
10 runs of the proposed method for each dataset, thus resulting
1000 inferred networks for each experiment. The same obser-
vation applies to the ESMI method: although it is deterministic,
it is possible to become it stochastic due to the possibility
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of returning more than one subset tied in terms of mutual
information (the ties are broken by randomly selecting one of
the tied best subsets).

A. AIC versus PPV and SIM

Here we analyze the correlation between AIC and both
PPV and SIM for four different parameter setups varying the
number of samples and the size of the groundtruth networks,
applying our proposed method with random initial populations.

Figure 2 illustrates the evolution of PPV and SIM in
terms of AIC for a particular execution (most of the executions
displayed similar behavior) along 1000 iteractions (genera-
tion), with BA topology and 30 samples (for 60 samples and
for ER with 30 and 60 samples, the results were similar). The
dots corresponds to the pairs (AIC, SIM) and (AIC, PPV )
reached by the best inferred network in terms of AIC at a given
generation. The dot colors indicate the generation ranges in
which the corresponding networks were obtained: generations
1-200 (blue), 201-400 (dark green), 401-600 (light green),
601-800 (brown), 801-1000 (red). The corresponding Pearson
correlations between AIC and SIM and between AIC and PPV
are indicated in the panel titles. Based on these results, we can
note that the method presents fast convergence, since after 200
generations, the AIC values become close to the minimum AIC
obtained. The same happens to the topological similarities:
SIM and PPV reach values close to the maximum obtained
after 200 generatons.

Fig. 2. Values of (AIC, SIM) and (AIC, PPV ) obtained at each
generation for a single execution of the proposed method starting from random
initial populations considering BA topologies and 30 samples. The results were
similar for 60 samples and for ER topology with 30 and 60 samples. Dot
colors indicate the generations range in which the networks were obtained:
generations 1-200 (blue), 201-400 (dark green), 401-600 (light green), 601-800
(brown), 801-1000 (red).

Considering all 1000 performed executions, the boxplots
of the Figure 3 represents the distribution obtained for their
corresponding correlations (SIM in the left panel and PPV in
the right panel) considering BA topology (similar results were
obtained for ER topology). The correlation results obtained by
varying both topologies and number of samples are summa-
rized in Table II. It is important to note that a larger number
of samples implies in larger averages of absolute correlation
values.

It is clear that all correlations are highly negative (absolute
values larger than 0.9) for all experiments. Since the objective
is to minimize AIC, these results indicate that the AIC has
a great potential to drive the genetic algorithms toward better
inference when the number of samples is minimally sufficient.

Fig. 3. Boxplots representing the distribution of the correlaes between
(AIC, SIM) and (AIC, PPV ) obtained from 1000 executions involving
BA networks (similar results were obtained for ER topology).

TABLE II. AVERAGE (avg) AND STANDARD DEVIATION (std) OF THE

CORRELATION COEFFICIENT BETWEEN AIC AND PPV/SIM.

SIM PPV
m = 30 m = 60 m = 30 m = 60

ER
avg -0.96 -0.98 -0.94 -0.96
std 0.03 0.03 0.05 0.04

BA
avg -0.96 -0.99 -0.92 -0.96
std 0.03 0.02 0.06 0.03

B. Initial populations obtained by ESMI method

The inference results can be greatly improved when the
initial population is created by an inference method such
as the ESMI. Figure 4 presents boxplots conrresponding to
the distribution of SIM and PPV values obtained from
1000 inferred networks (10 groundtruth networks, 10 datasets
simulated per groundtruth, and 10 executions per dataset) by
our proposed method starting with random initial populations
(called GA.random from now on) and starting with initial
population obtained by ESMI searching for triplets (called
GA.ESMI from now on). Although these results are shown
only for BA topology, similar behavior was observed for ER
topology. Table III shows the averages and standard deviations
of SIM and PPV values for both ER and BA topologies.
We can observe that the results obtained by GA.ESMI were
superior to those obtained by GA.random, which shows the
benefit of starting the genetic algorithms from subsets obtained
from an inference method (ESMI in this case).

Fig. 4. Boxplots corresponding to SIM (left) and PPV (right) values from
1000 inferred networks considering BA topology. GA.R means GA.random
while GA.E means GA.EMSI.

C. Comparative analysis involving Mendoza et al method

This section presents a comparative analysis of the methods
GA.random, GA.ESMI, ESMI itself and the method proposed
by Mendoza et al [26]. The experimental protocol in this sec-
tion follows Table I, except for the number of gene expression
samples (m). Here m = 300 wih 10 concatenations of 30
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TABLE III. AVERAGES AND STANDARD DEVIATIONS FOR 1000
NETWORKS INFERRED BY THE PROPOSED METHOD WITH RANDOM

INITIAL POPULATION AND WITH INITIAL POPULATION INFERRED

BY ESMI. GA.R MEANS GA.RANDOM WHILE GA.E MEANS

GA.ESMI

SIM PPV

m = 30 m = 60 m = 30 m = 60
GA.R GA.E GA.R GA.E GA.R GA.E GA.R GA.E

ER
avg 0.572 0.585 0.68 0.747 0.661 0.682 0.841 0.873

std 0.029 0.029 0.028 0.034 0.043 0.04 0.036 0.029

BA
avg 0.57 0.583 0.633 0.669 0.705 0.727 0.801 0.819

std 0.025 0.027 0.027 0.032 0.038 0.038 0.037 0.039

samples, as done in [26]. The generation of each subset of 30
samples follows the PBN procedure previously described.

The Mendoza et al method executes the genetic algorithm
30 times to obtain a unique consensus network composed by
the edges that are most frequent along these networks, follow-
ing the “wisdom of crowds” principle [26]. Such consensus
networks were evaluated only in terms of similarity (SIM ).
An important restriction presented by this method refers to the
maximum degree kmax of the genes in the network that needs
to be defined a priori. This method (called “Mendoza” from
now on) was evaluated with kmax = {2, 3}.

Figure 5 presents boxplots representing the distribution
of 1000 SIM values (from 10 executions taking as input
10 datasets generated by 10 groundtruth networks) obtained
by the methods GA.random, GA.ESMI and ESMI, and two
points illustrated by “∗” and “+” corresponding to the results
obtained by Mendoza method with kmax = 2 and kmax = 3
respectively. Table IV summarizes these results presenting
averages and standard deviations. The best results for both ER
and BA topologies were obtained by our proposed GA method
with initial populations obtained by ESMI (GA.ESMI), while
the Mendoza method presented inferior similarities.

ER BA

Fig. 5. The boxplots correspond to the distributions of 1000 SIM values
obtained by GA.random, GA.ESMI and ESMI methods. The symbols ∗ and
+ correspond to the results obtained by Mendoza method with kmax = 2
and kmax = 3 respectively.

TABLE IV. AVERAGES (AVG) AND STANDARD DEVIATIONS

(STD) OF THE RESULTS PRESENTED IN FIGURE 5.

SIM
300 samples (concatenation of 10 sets of 30)

G.random ESMI G.ESMI kmax = 2 kmax = 3

ER
avg 0.794 0.86 0.886 0.598 0.576
std 0.021 0.02 0.016

BA
avg 0.691 0.731 0.746 0.61 0.5
std 0.016 0.019 0.02

VI. CONCLUSION

In this paper, we propose an approach based on genetic
algorithms to infer gene interaction networks modeled by
Boolean networks and probabilistic Boolean networks. Their
main advantages over other similar techniques are: (i) ap-
plication of several independent genetic algorithms, one for
each target gene; (ii) generation of initial populations with
exhaustive search for subsets of fixed size (degree) guided by
mutual information; (iii) the adoption of Akaike Information
Criterion (AIC) as fitness function to guide the algorithm. AIC
basically provides a measurement of the probability of the
gene expression data samples to be generated by the inferred
network according to its topology and logical rules, including
a factor that penalizes topologies with an excessive number
of edges (which implicates in an expressive increasing on the
number of statistical parameters to be estimated) given the
available data samples, avoiding overfitting.

The experiments performed based on data generated by
artificial gene networks constructed by the complex network
models Erdös Rényi (random) and Barabási-Albert (scale-free)
indicate that the three strategies aforementioned jointly applied
produce superior results, in terms of topological similarity,
when compared to a recently published genetic algorithm
based gene network inference [26]. The results of our proposed
method were kept superior even without the application of the
second strategy (initial populations randomly chosen, instead
of obtaining them by an inference method). In addition, the
initial population generation by the inference method (Exhaus-
tive Search by Mutual Information - ESMI) presented benefits
over the random generation, specially for a larger volume of
samples.

With regard to the adopted fitness function, the experi-
mental results showed that the AIC exhibits a good balance
between the complexity and the quality of fit in situations
with a limited number of samples, effectively guiding the ge-
netic algorithms toward networks presenting good topological
similarites with the grondtruth. In all presented scenarios by
applying genetic algorithms from random initial populations,
the average absolute correlations between the AIC and the
topological metrics of similarity (SIM) and positive predictive
value (PPV) were greater than 0.9. Moreover, the algorithms
converge quickly, requiring about 200 iteractions (generations)
to obtain the networks with the smallest AIC values and,
consequently, the largest SIM and PPV values.

Although the proposed method showed much promise in
terms of topological similarity, its validation can be furthered
by taking into account not only topological features, but also
dynamical aspects of the signals produced by the inferred
networks, comparing them to the signal generated by the
groundtruth network [10]. Thus, simpler topologies (smaller
average number of edges) may explain the dynamics of the
samples produced by the groundtruth almost as well as more
complex topologies (larger average number of edges).

The known topological aspects about biological networks
can be a valuable prior information to enhance the network
inference methods. For example, Lopes et al [22] presented
a feature selection method guided to obtain gene networks
with scale-free topologies. In the case of our proposed genetic
algorithms based method, something similar can be done,
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for instance, with regard to the crossover strategy. In the
recombination step, instead of randomly choosing an one-
point cut with uniform probability distribution, implying that
the union of the parent chromosomes be divided close to the
midpoint in most cases, resulting in two child chromosomes
with similar lengths, such probability distribution could be
changed to privilege cuts at the extremities, thus leading to
many chromosomes with small degree and some chromosomes
with very large degree. This could lead to a final network
possessing scale-free characteristics.

Finally, the proposed method can be easily parallelizable,
since each genetic algorithm (one per gene) can be processed
independently of the others. Thus, it is possible that each
processing core be responsible of obtaining the best predictor
subset for one target gene. In this way, real sized networks
(with thousands of genes) can be quickly inferred. Currently
there are low cost parallel architectures such as the Graph-
ical Processing Units (GPUs), which have been increasingly
employed for general purposes in scientific applications. Re-
garding the gene networks inference application, Borelli et
al implemented the exhaustive search by mutual information
(ESMI) method discussed here in GPUs, obtaining speedups
of the order of hundreds when compared to conventional
multicore CPUs [7].
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