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Abstract—Many methods have been published to prioritize
genes using network theory. By using protein-protein interaction
(PPI) data, it is possible to use mathematical features to rank
and prioritize genes products in the network. Taking into account
that genes related to the same diseases tend to connect, in
the network structure, the prioritization methods search for
candidate genes in the neighborhood of other genes already
known to be related to a specific phenotype. Unfortunately, some
existing algorithms can not deal well with highly connected genes,
and some of them end up being related by chance to the disease
being studied. We propose a pure method, with no need of
adjustments, based on the hitting time of a random walk in
PPI networks. This method captures information of the whole
network and can equally prioritize genes regardless of its degree.
We tested the efficiency of our method prioritizing candidate
genes for Attention-Deficit/Hyperactivity Disorder (ADHD). The
proposed method was able to give a good rank to genes that
have genetic association with ADHD and was able to prioritize
a large proportion of genes prioritized by other random-walk-
based methods.

Index Terms—hitting time, gene prioritization, PPI networks.

I. INTRODUCTION

IN the last 10 years, many studies have been published about
finding the missing heritability in complex diseases [1]–[3].

These disorders, unlike the Mendelian ones, can be caused by
many factors, having genetic and environment influence [1],
[4]. Finding the causes of such disorders has been a problem.
With the advent of high-throughput methods to obtain molec-
ular data, it has become possible to use different types of data
to improve the search for the causes of complex disorders
[1], [7]. At present, there are many public databases with
information about genes, and its products, the proteins, as well
as information of how they interact with each other. Complex
diseases can be caused by different variants (common, rare, de
novo) acting together in different genes, and it is also accepted
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that if one gene have more than 4 variants in different trios it
can be considered pathogenic.

The study of the interaction between proteins, that are
products of genes, has been confirmed as a promising way to
find out new candidate genes or biological functions as being
related to a disease of interest [7], [9], [10].

Protein-protein interaction (PPI) networks can be used in
different ways to find genes related to a disease. Usually such
data can help to find new candidate genes or to validate find-
ings from genome-wide association studies (GWAS), exome
analysis and expression analysis. Genes already associated to
a disease could be used as “controls” compared to a list of
candidates ranked by a new method in two ways: (1) we can
observe how many “control” genes are present in the new
candidate gene list, because it is expected that some genes
already described will be well ranked by the method, and (2)
we can observe if genes in the candidate gene list are “near”
or even directly connected to the “control” genes, assuming
that genes related to a disorder or same pathway must be
more connected. Some of network methods are based only on
local information (e.g. direct neighbours and shortest paths)
and others are based on global information, by considering
the whole topology of PPI networks (e.g. random walks and
network propagation). Currently, global methods [9], [10],
[18] are commonly used to prioritize genes and investigate
a neighbourhood of genes that are known to be related to a
disease (‘seeds’).

In this context, Kohler [9] proposed to use a random walks
with restart (RWR) method to prioritize candidate disease
genes. It takes as input a PPI network, a set of seeds and
candidate genes and outputs the set of candidates ranked
by a score. The RWR based association score of a given
gene can be computed iteratively with the formula 𝑝𝑡+1 =
(1− 𝑟)𝑊𝑝𝑡+ 𝑟𝑝0. Here, 𝑊 is the adjacency matrix (column-
normalized) of the network. The vector 𝑝𝑡 holds in its 𝑖-th
element the probability of the random walk be on node 𝑖 at
time step 𝑡. Furthermore, 𝑝0 is the initial probability vector
and 𝑟 is the probability of restarting the random walk at a
given node.

Unfortunately, PPI databases have a bias in their degree
distribution due to the manner in which different proteins are
assayed for interactions. Some genes products are much more
studied than others and consequently have more connections
in the PPI networks.

Aiming to circumvent this problem, a suite of statistical
adjustment methods (called DADA [6]) was proposed in
order to correct this bias in global methods of disease gene
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prioritization. Whilst RWR detects only higher degree genes
in the seeds neighbourhood, DADA intends to detect both high
and low degree related genes. They proposed to accomplish
this by integrating one of three different statistical adjustments
with one of three different uniform prioritization methods.

In this work, we apply an established network-based ana-
lytical algorithm to find genes related to a complex disorder
using the whole PPI network to prioritize genes, without
being biased by highly connected genes. In this approach,
all possible paths between pairs of genes are considered,
providing a rich amount of information.

We choose the Attention-Deficit/Hyperactivity Disorder
(ADHD) as our case study of complex disorder since GWAS
significant results were not achieved yet and it seems clear that
an integrative approach could contribute to its understanding
[20], [21]. A recent paper was published by a Psychiatric
GWAS Consortium using a PPI network approach, but the
authors used a limited version of the local method that adds
to the network only genes that share the same seeds as neigh-
bors [19]. The genetics of ADHD, like most of psychiatric
disorders, is complex due to both a non-Mendelian inheritance
pattern and a huge heterogeneity in phenotype, suggesting
the relevant role of multiple genes in the etiology of these
disorders [5]. We used a list of the ADHD database [8] as our
gold standard list to confirm genes prioritizided by application
of hitting time.

II. BACKGROUND

A. Hitting time method

In what follows, let 𝐺 be a PPI network, let 𝑆 =
{𝑠1, . . . , 𝑠𝑘} be a set of seeds, i.e., a set of nodes that are
previously known to be related to the disease that will be
investigated. Finally, let 𝐶 be a set of candidates, i.e., the set
of nodes we want to give a rank, accordingly to their relation
with the disease. One can ask the following question: how
many steps we expect that a random walk starting at 𝑐 takes
to reach 𝑠 for the first time? The hitting time from 𝑐 to 𝑠,
which we denote by 𝐻(𝑐, 𝑠), is defined as this expected time.
Note that in order to calculate the hitting time from 𝑐 to 𝑠, all
paths between them have to be considered. Thus, information
contained in the whole network is encapsulated in the hitting
time.

For each candidate 𝑐 ∈ 𝐶, we calculate the hitting time
from 𝑐 to 𝑠𝑖, for all seeds 𝑠𝑖 ∈ 𝑆. Then, the HT-average of
the candidate 𝑐, denoted by 𝐻𝑇avg(𝑐), is defined as the average
of all these values, i.e.,

𝐻𝑇avg(𝑐) =

𝑘∑
𝑖=1

𝐻(𝑐, 𝑠𝑖)

𝑘
. (1)

The smaller this value the better is the rank of 𝑐. Thus, the best
ranked gene is that one with smallest HT-average. We remark
that, instead of the average, we could use the maximum or
minimum among the hitting time values from a candidate to
all seeds, but the difference would be almost irrelevant.

In our method, for a candidate to receive a good rank (small
HT-average), it is not enough to have high degree on the PPI

network or being close to the seeds. Imagine two scenarios in
which genes with different degree should or not be prioritized:
(i) Suppose that a candidate has small degree, but all its

neighbours either are seeds or are nodes that are con-
nected to all seeds. In this case, probably the candidate is
related to the disease we are considering. Thus, it would
be interesting that the hitting time method give a good
rank to such candidate.

(ii) Suppose that a candidate has high degree, but none of
them are seeds and all its neighbours are very far from
the seeds. We expect that a good method gives a bad rank
to such candidate.

The hitting time method is rigorous, in the sense that in
order to obtain a good rank, the candidate must have many
good “connections” to the seeds.

III. METHODS

A. PPI network dataset

We constructed a network using genes mapped in protein-
protein interaction (PPI) databases and their physical inter-
actions to analyze the mathematical properties that can give
information about the network components. We used three
important human PPI databases: Human Protein Reference
Database - HPRD [14], The Molecular Interaction Database
- MINT [16] and The IntAct Molecular Interaction Database
[15]. The databases were downloaded and integrated using
official gene symbol and Entrez ID. With the union of the
three databases, the whole human interactome constructed has
14276 nodes (proteins/genes) and 88525 physical interactions,
supported by at least one piece of direct experimental evidence
demonstrating physical interaction between two human pro-
teins in at least one database. We use the network composed
by the largest connected component of the above network,
which contains 12373 proteins and 74337 interactions.

B. ADHD GWAS dataset

To choose the seeds for this analysis in ADHD, we selected
the 50 resulting SNPs with P-value ≤ 10−5 from Neale
et al. [11] meta-analysis, mapped in 14 genes. This meta-
analysis included only children/adolescents and studies that
used the same categorical diagnostic variables, decreasing
chances of phenotypic heterogeneity. Taking into account
this list of 50 SNPs, we searched in a 100kb upstream and
downstream interval, SNPs in linkage disequilibrium (LD) for
𝑅2 ≥ 0.8 with the SNPs in the list, using the International
HapMap Project (available at http://hapmap.ncbi.nlm.nih.gov/)
data phase III/Rel#2, CEU population samples. After using
the LD data, we obtained a set of 30 genes, but only 19
were mapped in the PPI databases. We used this set as seeds
to perform the network analysis in this work. Similar to the
method performed by Poelmans et al. [20], we use GWAS
results to construct and analyze a protein-protein network.

C. Mathematical details of the Hitting Time Method

Let 𝐺 be a network with 𝑛 nodes (say, 1, . . . , 𝑛). Let 𝐴𝐺

be the adjacency matrix of the graph 𝐺, i.e., an 𝑛× 𝑛 matrix

10



such that, for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have 𝐴𝐺(𝑖, 𝑗) = 1 if
𝑖 is connected to 𝑗 in 𝐺. Furthermore, we put 𝐴𝐺(𝑖, 𝑗) = 0
in the case 𝑖 and 𝑗 are not connected. This matrix represents
the whole graph.

Given an 𝑛 × 𝑛 matrix 𝐴, we say that 𝜆 is an eigenvalue
of 𝐴 if there exists a non-null vector 𝑣 such that 𝐴𝑣 = 𝜆𝑣. In
this case, we say that 𝑣 is an eigenvector of 𝜆.

Given a node 𝑣 of the network 𝐺, a random walk starting at
a node 𝑤 is a sequence of random steps such that the following
holds: we start at 𝑤 and we move to a neighbour 𝑧 of 𝑤
with probability 1/𝑑𝐺(𝑤), where 𝑑𝐺(𝑤) denotes the number
of neighbours of 𝑤 in the network 𝐺. Now we apply another
step, looking to the neighbours of 𝑧 and so on. Formally, let
𝑝𝑖𝑗 = 1/𝑑𝐺(𝑖) if 𝑖 and 𝑗 are neighbours, and let 𝑝𝑖𝑗 = 0
otherwise. Let 𝑀 = (𝑝𝑖𝑗)1≤𝑖<𝑗≤𝑛 be the random walk matrix
of 𝐺. The random walk is completely defined by the matrix
𝑀 , because if the random walk is at a vertex 𝑖, one can just
look to the 𝑖-th row of 𝑀 to calculate the probability of being
in a vertex 𝑣 in the next step.

Symmetric matrices have many properties that can help us to
obtain information about networks. Unfortunately, the random
walk matrix 𝑀 is not symmetric unless 𝐺 is regular, i.e.,
all nodes have the same number of neighbours (usually that
is not the case for PPI networks). But it is easy to check
that the matrix 𝑀 can be seen as the matrix obtained by
the product of the matrices 𝐷 and 𝐴, i.e., 𝑀 = 𝐷𝐴, where
𝐷 is the diagonal 𝑛 × 𝑛 matrix such that 𝐷𝑖𝑖 = 1/𝑑𝐺(𝑖).
Now, after some calculations, one can check that the matrix
𝑁 = 𝐷−1/2𝑀𝐷1/2 = 𝐷1/2𝐴𝐷1/2 is symmetric. Since 𝑁 is
a symmetric matrix, it has 𝑛 real eigenvalues and, furthermore,
it is well known that 𝑁 can be written as a sum of products
of eigenvalues and eigenvectors. Let 𝜆1 ≥ . . . ≥ 𝜆𝑛 be the
(real) eigenvalues of𝑁 and let 𝑣1, . . . , 𝑣𝑛 be the corresponding
eigenvectors of unit length. We have

𝑁 =

𝑛∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖 ,

where 𝑣𝑇𝑖 is the transpose of 𝑣𝑖.
Let 𝑣 and 𝑤 be nodes of 𝐺 and consider a random walk

on 𝐺 starting at 𝑣. We denote by 𝑋𝑣,𝑤 the random variable
that denotes the number of steps that a random walk takes to
leave 𝑣 and reach 𝑤 for the first time. The hitting time from
𝑣 to 𝑤 of a random walk in 𝐺 is defined as follows.

𝐻(𝑣, 𝑤) = 𝔼(𝑋𝑣,𝑤).

In other words, 𝐻(𝑣, 𝑤) is the expected time of the number
of steps that a random walk starting at 𝑣 takes to reach 𝑤 for
the first time. Thus, in order to calculate the hitting time, all
the possible paths between 𝑣 and 𝑤 have to be considered,
meaning that connections of the whole network have to be
taken into account. Then, we applied the Lovász equation [18]
that allows to calculate the hitting time between all node pairs.

Theorem 1. Let 𝐺 be a connected network with 𝑛 vertices
(say 1, . . . , 𝑛) and 𝑚 edges. Let 𝑣 and 𝑤 be nodes of 𝐺. Then,

𝐻(𝑣, 𝑤) = 2𝑚

𝑛∑
𝑖=2

1

1− 𝜆𝑖

(
𝑣𝑖(𝑤)

2

𝑑𝐺(𝑤)
− 𝑣𝑖(𝑣)𝑣𝑖(𝑤)√

𝑑𝐺(𝑣)𝑑𝐺(𝑤)

)
,

where 𝑣𝑖(𝑥) denotes the 𝑥-th coordinate of the vector 𝑣𝑖.
Let 𝐺 be a graph and let 𝒱 be a basis of eigenvectors

for the matrix 𝑁 associated with 𝐺. Unfortunately, for many
graphs, the associated matrix 𝑁 has eigenvalues with large
multiplicity, which implies that 𝒱 may not be orthogonal,
as required in Theorem 1. To find the orthonormal basis of
eigenvectors, we implemented the “Gram-Schmidt process” to
obtain an orthogonal basis from 𝒱 .

IV. RESULTS AND DISCUSSION

We make use of the hitting time on the PPI network in
order to prioritize genes potentially associated with complex
diseases.

The main purpose of the hitting time method is to avoid
the bias of the degree in a network, generated by nodes
which are highly connected just because they are more often
investigated in the literature. We tested the efficiency of the
method by applying it to prioritize genes that are related
to Attention-Deficit/Hyperactivity Disorder (ADHD). The PPI
network considered here is composed by the largest connected
component of the union of three datasets, namely, HPRD,
MINT and IntAct.

In order to check if the first genes prioritized by HT
have some relation with ADHD, we searched on ADHDgene
website the genes ranked in the first ten positions by HT, and
six of them showed a genetic relation to ADHD (see Table I).

We remark that the genes with the best ranks are in genomic
regions known to be related to ADHD, either because of single
nucleotide polymorphisms (SNPs) or copy number variations
(CNVs), and yet some were already reported in literature as
having a significant genetic relation.

Furthermore, the bias generated by the highly connected
nodes does not affect the hitting time method. In spite of the
fact that the PPI network used here contains more than 1800
nodes that have at least 20 interactions, and more than 150
nodes that have at least 100 interactions, in the top 20 ranked
by hitting time displayed maximum degree of 36 and average
degree of 7.3 links. See Table I for more information (average
distance to the seeds and average hitting time to the seeds)
about the nodes that receive the 10 best ranks (the smallest
average values of the hitting time from the candidates to the
seeds).

We also compared the efficiency of our method with two
other methods: (i) the first method is based on a random walk
with restart called here by RWR; (ii) the second, called DADA,
can be seen in [6]. We applied the methods RWR and DADA
to the same PPI network to compare their results.

Fig. 1 contains the seeds (genes with red border) used in
the analysis and the top 10 genes ranked by each method. The
top 10 genes ranked by DADA are in yellow and the top 10
genes ranked by Hitting Time are in blue. The green genes are
among the top 10 ranked by both methods. The genes that are
reported by ADHDgene website as being related to ADHD
are with diamond shape.

In order to compare how HT and DADA behave similarly
in long term, we plotted the overlap of genes prioritized by
both methods. For the first 𝑛 genes prioritized, 𝑛 ranging
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TABLE I
TABLE OF GENES RANKED IN THE TEN FIRST POSITIONS BY HT (COLUMN “AVERAGE HITTING TIME”) AFTER REMOVING SEEDS OF THE RESULTS. THE

RANKS GIVEN BY DADA ARE IN COLUMN “DADA RANK”. COLUMN “AVERAGE DISTANCE” SHOWS THE AVERAGE DISTANCE FROM THE

CORRESPONDING GENE TO THE SEEDS. THE LAST COLUMN SHOWS GENETIC ASSOCIATIONS OF THE CORRESPONDING GENES TO ADHD.

Gene HT
rank

DADA
rank Average distance Average hitting time

Genetic relation with ADHD reported
by ADHDgene

FADS1 1 1 4.15 33062.09 Significant for gene-based test [25]

AK1 2 2 3.55 33364.79 Indirect association

PTGS1 3 3 3.95 33434.11 Mapped by significant region (9q33) [22]

MYO15B 4 4 3.40 33473.18 Mapped by CNV [21]

PCID2 5 7 3.30 33549.58 No reported association

GMFG 6 10 4.05 33592.15 No reported association

PPP1R16A 7 9 3.35 33607.78 No reported association

PHP14 7 25 4.35 33608.78 No reported association

CUTC 9 8 3.25 33618.43 No reported association

SORCS1 10 16 4.05 33623.17 Literature-origin [23]

ZP4 10 17 4.05 33623.17 Mapped by CNV [24]

PRB4 10 15 4.05 33623.17 No reported association

from 1 to 12353, the overlap is shown in Figure 2. Until the
2000 first genes, the plot shows that HT was able to prioritize
approximately 80% of genes prioritized by DADA. However,
Figure 3 shows that DADA tends to prioritize more connected
nodes, whilst HT was able to prioritize genes with low degree.

V. CONCLUSION

The efficiency of the Hitting Time method proposed in this
paper was tested by prioritizing candidate genes for Attention-
Deficit/Hyperactivity Disorder (ADHD). The method was able
to retrieve genes that have genetic association to ADHD. To
test the efficiency of the method we also compared the results
with results obtained by other two well known methods for
genes prioritization (one based on random walk with restart
(RWR) and the other, called DADA, composed by a mix of
strategies). The hitting time method was able to give similar
ranks to the 20 first genes ranked by DADA (Table I).

We also showed that HT had a consistent behavior and
was not affected by the bias of highly connected vertices.
Besides HT was able to prioritize a large proportion of genes
prioritized by DADA, no manual adjustment was necessary in
order to choose more connected or less connected nodes to be
prioritized.

We remark that hitting time has been successfully applied
as an inference method to measure the network modularity,

and in particular to suggest the subtypes of diseases based
on a heterogeneous network [17]. In this paper, Yao et al.
developed a Hitting-Time-based method, called CIPHER-HIT,
for assessing the modularity of disease gene predictions and
credibly prioritizing disease-causing genes.
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Fig. 2. Comparison between Hitting Time (HT), DADA and Random-walk
with Restart (RWR), showing the overlaps between the methods, taken in
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