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Abstract— Reverse Engineering of Gene Regulatory 

Networks (GRN), i.e. finding appropriate mathematical models 
to understand complex cellular systems, can be used in disease 
diagnosis, treatment, and drug design. There are fundamental 
gaps in the construction of GRN with regard to modeling of 
hidden/delayed interactions. Addressing these deficiencies is 
critical to understanding complex intracellular processes and 
enabling full use of the vast and ever-growing amount of 
available genomic data. Current modeling strategies either 
ignore or oversimplify time delays resulted from transcription 
and translation processes during gene expression. In addition, 
many research works do not account hidden variables such as 
transcription factors, repressors, small metabolites, DNA, 
microRNA species that regulate themselves and other genes but 
are not readily detectable on microarray experiments. To 
capture the effect of these parameters, in this paper, we utilize 
our developed Partially Connected Artificial Neural Networks 
with Evolvable Topology (PANNET) to find a more 
comprehensive model of GRN by considering the effects of 
unknown hidden variables and different time delays. This 
method is innovative, since the structure of the network has 
memory and internal states, which can model the unknown 
hidden variables and time delays. We furthermore use a new 
evolutionary optimization based on variable-length Genetic 
Algorithm (GA) to find a sparse structure of PANNET to predict 
the gene expression levels accurately. Finally we demonstrate the 
capability of PANNET in constructing GRN, including the effect 
of different delays and unknown hidden variables through 
modeling of E. coli SOS inducible DNA repair system.  

Keywords—gene regulatory network; artificial neural network 
genetic algorithm; evolvable topology; time series 

I. INTRODUCTION  
Accurate mathematical models that describe the 

interactions within and between groups of genetic and 
regulatory cellular components (i.e. Gene Regulatory Network) 
are essential for fully understanding the complex biological 
systems involved in cellular differentiation, cancer 
development, aging, disease etiology and response to therapy. 
The ability to accurately model GRN activities enables us to 
make full use of the burgeoning accumulation of genome-wide 
expression data and bridge the gap between data and 
knowledge [1], [2].  

Understanding complex cellular systems requires studying 
how their different components work together. Since cellular 

activity measurements are available at the genomic scale, 
mathematical modeling of complex biological networks 
(known as Reverse Engineering) reveals an overall picture of 
biological processes that take place in a cell. DNA microarray 
technology enables us to simultaneously measure the 
expression levels of thousands of genes inside GRN as they 
respond to specific environmental conditions [3]. Defining the 
internal structure and functions of a GRN requires gene 
expression time series which can be provided by collecting cell 
or tissue samples over several time instants. Constructing a 
GRN model using temporal gene expression levels is crucial in 
targeted in-silico experiments to investigate and predict the 
behavior of the system under different conditions. Such studies 
have led to important improvements in medical diagnosis, 
disease treatment, and drug design [4].  

Modeling the temporal dimension of GRN is a challenge, 
since different delays exist due to the time required for a 
regulatory gene to express its protein product and for the 
transcription of the target genes to be affected by these 
regulatory proteins [5]. Especially, each one of these 
interactions may have different time lags [6]. In addition, the 
GRN model has to effectively account for the presence and 
activities of regulatory intermediates, such as microRNAs, 
proteins, and metabolites. These “hidden variables” are not 
always represented in microarray data [7], [8], but can 
introduce different delays into the regulatory response time. 
Hence, the consideration of different time delays in the 
presence of unknown hidden variables in GRN is a critical 
issue. 

Most of the current methods of GRN modeling ignore or 
oversimplify the effect of time delays and hidden variables, 
and are not adequate for finding reliable models to understand 
dynamical behaviors of complex biological systems. For 
example, some methods construct the GRN without 
considering any time delay [9], [10], [11]. Some other methods 
incorporate a fixed time delay that is found based on a 
correlation matrix [12], stochastic simulation algorithms (SSA) 
[13], [14], or dynamic Bayesian networks [6]. [15] and [16] 
employ a model based on delayed differential equations, but in 
these works, the time delay parameters are set arbitrarily rather 
than being derived from experimental observations.  

Canonical Recurrent Neural Networks (RNN) are networks 
with delayed feedbacks and used for modeling the temporal 
behaviors of gene expression data. However, studies based on 
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RNN either consider fixed time-delays or do not consider the 
effect of hidden variables which operate within GRN [17], 
[18], [19]. El Bakry et al. [20] presented an approach, based on 
pairwise correlations, to infer GRN variable time delays 
without considering the effect of hidden variables. Estimation 
of known hidden variables (some identified proteins and 
transcription factors) has been investigated by state space 
modeling to infer hidden state variables from observations [7], 
[21]. The Unscented Kalman Filter is employed for estimation 
of both parameters and identified hidden variables when the 
nonlinear state space model is known [7]. However, because of 
experimental limitations, there are still some unknown hidden 
variables that influence GRN, which are not addressed in 
literature. Thus, it is not easy to find state space GRN models 
to infer unknown hidden variables. In general, the current 
methods still did not take into consideration unknown hidden 
variables and different delays between various parameters, 
which are inherent properties of GRN. To address this 
problem, we aim at incorporating different delays and 
unknown hidden variables to provide a comprehensive and 
more accurate interpretation of internal interactions in GRN. 

In this paper, we develop a method that incorporates the 
effects of different time delays and unknown hidden variables 
into mathematical models of GRN. The proposed approach is 
based on Partially Connected Artificial Neural Networks with 
Evolvable Topology (PANNET), which have been developed 
in our recent work for modeling and forecasting behavior of 
chaotic systems [22]. In the case of GRN, PANNET constructs 
a nonlinear mathematical model between gene measurements 
called as observation nodes, and additional un-measured 
variables called as hidden nodes. Using the evolutionary cycle 
of a proposed variable-length Genetic Algorithm (GA) with 
novel crossover and mutation operators, the topology of the 
network is evolved. Through the evolution, a sparse or partially 
connected topology of the network is generated to model the 
underlying behavior of the system while hidden nodes play the 
role of memory and internal states in the network. 

This rest of this paper is organized as follows. Section II 
describes proposed PANNET method and evolutionary 
procedure for generating an efficient topology. In section III, 
the simulation results are presented. Section IV concludes the 
paper.  

II. METHOD DESCRIPTION 
Artificial Neural Networks (ANNs) are parallel processors 

that can approximate nonlinear and complicated functions. 
They are particularly useful when analytical solutions are not 
possible, or very difficult, using conventional methods [23], 
[24]. The common structure of ANNs consist of a set of 
input/output nodes, and internal processing units i.e. neurons 
distributed in different layers, where the strength of 
connections between nodes and neurons are determined 
through learning procedures using available observations. 
However common structure of ANNs are not suitable in GRN 
modeling, since a GRN cannot be solely characterized by 
external inputs (if exists) and gene observations, if unknown 
hidden variables, internal states, and time delay play an 
important role in the dynamics of genetic networks [7], [20].  

The focus of this paper is on the application of the proposed 
PANNET for modeling delayed/hidden interactions in GRN. In 
this context, a novel Genetic Algorithm as a bio-inspired 
computational algorithm is used to adapt the parameters and 
topology of the network. This methodology leads to a partial 
connected i.e. sparse configuration between external signal (if 
exist), delayed gene expressions and a set of unknown hidden 
variables. Hidden nodes can play the role of memory and 
internal states depending on the complexity of the system. This 
capability is useful in GRN modeling due to the fact that GRN 
are sparse, i.e. genes are regulated by limited number of other 
genes [25]; and also PANNET can be trained with fewer 
number of temporal sample points [26] (which is common in 
microarray). To this aim, the basic concept and modeling 
approach of the PANNET for constructing the GRN and 
forecasting the gene profiles are introduced.  

A. The PANNET Approach to GRN 
In this section, we illustrate the applicability of PANNET 

for GRN modeling to capture the relationship among external 
input, gene observation nodes and hidden nodes to provide 
accurate prediction of biological systems. From the modeling 
point of view, the time delays and unknown hidden variables 
that are taking place in the middle of observed gene regulation 
are to be considered. PANNET consists of an arbitrary number 
of neurons, which are partially connected to external input 
nodes, hidden nodes, and observation nodes (Fig. 1). Where 
external inputs represent the externally added chemicals, 
nutrients, or other exogenous inputs [27], observation nodes 
represent current values of gene expression level; and hidden 
nodes play the role of memory or internal states of the system 
that we don’t have experimental measurements for them. In 
this case, the only available information is that the number of 
hidden variables are much smaller than the number of 
transcribed genes and most of the genes are regulated by a 
small number of transcription factors [8]. To determine the 
topology of PANNET, we used the evolutionary cycle of a 
proposed variable-length GA with novel crossover and 
mutation operators. The topology of PANNET is characterized 
by the number of neurons, the number and origin of the 
input/output nodes for each neuron, and connection weights, 
which are supposed to evolve based on the defined fitness of 
GA. The fitness is an index function that determines the 
accuracy of the extracted PANNET model. Here, this fitness is 
considered as the Mean Squared Error between actual values of 
observation nodes and their estimated values by PANNET. In 
the last generation of this evolutionary process, a nonlinear 
state space mapping is found between external input, 
observation nodes and hidden nodes. 

Fig. 1 illustrates the structure of a typical PANNET, which 
consists of one external input node, x1, two hidden nodes, x2 
and x3, and three gene observation nodes, x4, x5 and x6. Assume 
that the nodes are partially connected in the network via two 
neurons. For example, the first neuron (Neuron1) is connected 
to three inputs x1, x2, x4 , at time t with corresponding weights 
w1

1, w2
1, w4

1 , and three outputs x2, x4, x5, at time t+1 with the 
corresponding weights v2

1, v4
1, v5

1. In order to find how the 
gene observation nodes and hidden nodes are updated from 
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time t to t+1, the following two equations are used to obtain 
the value of the xi(t+1): 

 
Fig. 1. A typical PANNET structure includes one external input, two 

hidden nodes, three observation nodes and two neurons 

( 1) . ( . (t))k k
i i j j

k j

x t v f w x+ =� �  (1)

j∈{ Incoming nodes to Neuron k}, i∈{Hidden, observation} 

f(t)=1/(1+e-t) (2)

where i is the index of updated hidden nodes and observation 
nodes, wj

k is the weight of connection from node xj(t) to kth 
neuron and vi

k is the weight of connection from kth neuron to ith 
node at time t+1. In case of multiple incomings connections 
from different neurons to the node xi, the value of node xi(t+1) 
has to be revised by adding the results coming from different 
neurons. With this set up, the problem now is to find number of 
neurons, connection weights, the number and origin of the 
inputs and outputs for each neuron. In other words, the 
structure of network including connections between the nodes 
is not known. To find the unknown parameters, we introduce a 
novel GA through in which a set of candidate network 
topologies (individuals or candidate solutions) will be evolved 
so that the network structure will be eventually adapted to a 
suitable topology with minimum possible fitness. 

B. Evolutionary Algorithm  
Candidate solutions in genetic algorithm are a 

concatenation of a random number of neurons along with their 
description which represent the network topologies. In each 
individual, number of neurons, number of input nodes, number 
of output nodes, origin of the input nodes, origin of the output 
nodes, connection weight of the input nodes, and the 
connection weight of the output nodes for each neuron has to 
be selected. These parameters are indicated as NN, NIn, Nout, In, 
Out, Inw, Outv respectively. Before evolutionary process, initial 
number of neuron and hidden nodes are decided by the design 
of the experiment. Fig. 2 illustrates the first and last neurons of 
a candidate network consisting of K neurons. 

 
Fig. 2. Candidate structures of PANNET with K neurons 

The performance of the candidate network topology is 
evaluated by a fitness function, which is defined as the mean 
sum square error between all P gene observation nodes xi and 
their corresponding estimation

ix� , over the whole set of training 
data with T samples, and L different set of experiments as 
follows.  

2

1 1

1 ( ( ) ( ))
. .

L T

i i
l t i

Fitness x t x t
T P L = =

= −��� �  (3) 

Different candidate network topologies with different 
number of neurons and different inputs/outputs for each neuron 
will lead to GA with different length of individuals. Because of 
that, traditional crossover and mutation operators are not 
appropriate. Thus, we have developed specific genetic 
operators for variable-length GA. These operators evolve the 
topology of the networks and generate new offspring from 
candidate individuals with different lengths. Crossover with 
probability of Pc swaps one arbitrary selected neuron in one 
individual with all its components including its corresponding 
input/output nodes and connection weights with the one in the 
second individual with its corresponding components. In other 
words, this is a type of two-point crossover where crossover 
sites are at the beginning and the end-points of a neuron and 
may change the length of the individuals. 

The proposed mutation with probability of Pm mutates the 
number of neurons, i.e. NN, or one of the their components 
including. NIn, NOut, In, Out, Inw and Outv. Mutation on the 
number of neurons is equivalent to searching new region and 
causes bigger changes in the solution space; while mutation on 
one of the parameters of neuron is similar to searching in the 
neighborhood of a local solution. Therefore, the developed 
mutation operator insured searching of the local space and 
escaping from possible local minimums. 

Mutation on the NN will delete/add a neuron in the network. 
If this new number of NN is higher than the previous one, a new 
neuron with a set of its random input/output connections have 
to be added to the network. Otherwise, one of the existing 
neurons in the individual along with all its connections have to 
be removed. Mutation at NIn, NOut, In, Out, and Inw and Outv 
generally leads to adding/deleting an input/output node and its 
corresponding connection weight in the neuron, or changing in 
the wiring or weight of a connection. 

If the mutation site is on NIn, and the mutated NIn is more 
than the old one, a random new input and its corresponding 
random weight have to be added to the neuron in the network. 
Otherwise, an input and its corresponding weight have to be 
removed from the neuron. Procedure for mutation on NOut is 
similar to mutation of NIn.  

If the mutation site is on one the nodes in In i.e. input 
vector of a neuron, its corresponding connection is rewired to 
another node. Procedure for mutation on Out is similar to 
mutation of In. This is a way to change the connections 
between nodes and neurons to improve the capability of the 
network based on its partially connected structure.  
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If the mutation site is on the weights vector [Inw, Outv], the 
selected weight W∈{w, v} is mutated according to (4), where � 
is a random value in the range of [0, 1]. 

(1 )W W α= ±  (4) 
Since, the number of mutation sites in the defined 

individual is equal to the length of the individual, then the rate 
of the mutation on NN which is equal to 1/(length of individual) 
is smaller than the rate of mutation on other components of the 
individual. This is aligned with [28], which states that most of 
the improvements in evolutionary progress are related to 
searching the neighborhood of the local region. 

By applying the crossover and mutation operators, 
individuals that represent the configurations of the networks 
are evolved. It is worth mentioning that based on the capability 
of PANNET, a near optimal partially connected network will 
be generated. Moreover, this topology includes non-uniform 
time delays or internal states that model the underlying 
dynamical behavior of the biological system with efficient 
accuracy of prediction.  

III. EXPERIMENTAL RESULTS ON THE ESCHERICHIA COLI 
SOS DNA REPAIR SYSTEM 

In this section, we illustrate the capability of PANNET in 
constructing GRN, since the effect of different delays and 
unknown hidden variables are taking into consideration in 
modeling. To this aim, we selected expression profile of the E. 
coli SOS inducible DNA repair system [29].  

The E. coli SOS system is a well-characterized bacterial 
gene network, consisting of about thirty transcriptionally-
regulated genes. Under normal conditions, a constitutively-
expressed master repressor protein LexA represses the 
expression of the genes responsible for DNA repair. However, 
when, the SOS sensor protein RecA encounters and binds 
damaged (single-strand) DNA, it becomes activated and 
triggers auto cleavage of LexA. The subsequent drop in LexA 
level results in derepression and subsequent upregulation of an 
array of SOS genes. Once DNA damage has been repaired, the 
level of activated RecA drops, allowing LexA to reaccumulate 
in the cell and repress the SOS genes. At this point, the cells 
return to their original pre-induced state (Fig. 3) [27]. 

 
Fig. 3. The bacterial E. coli SOS DNA Repair network [27].                  

Inhibitions are represented by−•, while activations are represented by � 

For this study, we used temporal expression data on eight 
SOS genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and 
polB. Gene expression was quantified using plasmid-borne gfp 
(Green Fluorescent Protein) chimeric reporter genes and was 
measured at 6 minute intervals over 5 hour (50 time points) 
following induction of the system by ultraviolet irradiation. 
The data set comprises two sets of duplicate experiments, in 
which the SOS response was induced by two different UV 
doses (5 Jm�2 in experiments 1 and 2, and 20 Jm-2 in 
experiments 3 and 4) [30]. Fig. 4 shows the corresponding 
temporal gene expression levels of each of the eight SOS genes 
related to experiment 1. 
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Fig. 4. Measured time series of 8 genes in the E. coli SOS DNA repair 

system (Experiment1 with UV doses equal to 5 Jm�2) [30]. 

For reconstructing the network with PANNET, we have 
used gene expression measurements of experiment 1 and 2 (5 
Jm�2 UV induction). The first 35 time points of each 
experiment was considered for training the model of GRN and 
the remaining 15 time points are considered for testing the 
results. In this way networks are tested by the data with 
different time point comparing to the ones used as training. 
This can lead us to more accurate and realistic evaluation from 
our networks [31].  

All eight time series in each experiment were normalized in 
the range [0, 1] with respect to a unique maximum-minimum. 
In the results, we have shown regulatory interactions for three 
target genes lexA, recA, and uvrA. For this purpose, we 
considered three different PANNET structures to model the 
behavior of three target genes lexA, recA and uvrA separately. 
Since there are not any exogenous inputs, input of each neuron 
can be selected from eight gene observation nodes, and a set of 
hidden nodes, while the output of each neuron can be selected 
from a target gene and hidden nodes. The initial numbers of 
hidden nodes are chosen by the designer which are 4, 4, 2 for 
networks of lexA, recA, uvrA respectively. 

In order to evolve the networks configuration, parameters 
of GA are selected according to the table I. In this table, 
population size, number of generation, probability of 
crossover, probability of mutation, maximum number of 
inputs, and maximum number of outputs for the neurons are 
represented by Np, Ng, Pc, Pm. Max NIn, and Max NOut. Also, 
initial weights are randomly generated by a uniform 
distribution in the range of [-2, 2]. According to these 
parameters, plot of minimum fitness through the evolutionary 
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progress of GA for target genes lexA, recA, and uvrA are 
shown in Fig. 5. 

TABLE I.  PARAMETERS OF GA  

Np Pc Max. NIn Elitism Rate 
100 0.5 4 0.1 

Ng Pm Max. NOut Tournament Size 
2000 0.1 3 10 
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Fig. 5. Evolution progress of GA for target gene a. lexA, b. recA, c. uvrA

To see the efficiency of the developed PANNET in 
prediction of gene expression data, the predicted expression 
levels of target genes lexA, recA, and uvrA based on our 
proposed method are shown in Fig. 6. In each part of this 
figure, the experimentally determined gene expression profiles 
and the predicted expression profiles for both Exp. 1 and 2 are 
shown with solid blue line and broken red lines respectively. It 
can be seen that the resulting models have accurately 
interpreted the dynamics of the target genes lexA, recA and 
uvrA from the given experiments. 

By selecting the parameters of table I, the generated 
networks for target gene lexA, recA and uvrA predict the test 
data of Exp.1 and 2 with the Normalized Root Mean Square 
Errors (NRMSE). See table II. NRMSE is calculated by (5) 
where x is the gene observed value, x� is the estimated one, T is 
the total number of test samples, xmin and xmax are the minimum 
and maximum of the observed gene value respectively. 

2

max min 1

1 1 ( ( ) ( )) )
( )

T

t

NRMSE x t x t
x x T =

= −
− � �  (5) 

 

TABLE II.  NRMSE OF THE PREDICTION  

Target Gene Exp. 1 Exp. 2 
lexA 0.21 0.18 

recA 0.21 0.22 

uvrA 0.20 0.18 
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Fig. 6. Time series of measured and predicted expression of gene a. lexA,  

b. recA, c. uvrA (The first 35 time points are used for training, the remaining 
15 time points are used for testing) 

The constructed networks for these three genes are shown 
in Fig. 7 where hidden nodes are demonstrated with hid. The 
model of lexA from Fig. 7.a identifies the previously reported 
regulations of target gene lexA by uvrD, umuD, lexA and [31], 
[32], [33]. The model of recA from Fig. 7.b can identify the 
previously reported regulations of target gene recA by umuD, 
lexA, recA and polB [32], [33]. Also, model of uvrA in Fig. 7.c 
can identify the previously reported regulations of target gene 
uvrA by lexA, uvrA and recA [33], [35], [36]. These results 
demonstrated the strength of the proposed method in inferring 
real gene network topology.  

As mentioned earlier, the hidden nodes act as memory or 
internal states in the model of the GRN. To make this idea 
more clear, consider the model of interactions for target genes 
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recA (Fig. 7.b), which seems more straightforward. It is 
obvious that hid4 is not used at all. hid1 is an inter-connection 
between uvrD, uvrA, and umuD at time t under a sigmoid 
function (neuron4) to neuron2. The result of neuron2 is 
connected to recA by two ways directly under a connection 
weight and by another interconnection hid3 and neuron1 and 
then recA. In other word, hid1, hid3 can transmit their internal 
data under different delays to recA. Moreover, hid2 does not 
have any inputs but its value has effect on recA through 
neuron1 and neuron3. Therefore hid2 shows the effect of an 
unknown hidden variable which is effective on the target gene 
recA. 

Results illustrate the capability of PANNET to model the 
temporal gene expression levels and reveal the regulatory 
pathways of three target genes in E. coli. The proposed 
approach is unique in that it allowed us to consider the effect of 
hidden/delayed interactions between different components of 
the network. 

a. 

 
b. 

 

c.

 
Fig. 7. Constructed models of regulations of target gene a. lexA, b. recA,    

c. uvrA 

IV. CONCLUTION 
An important concern in modeling gene regulatory 

interactions is that the underlying biological processes may 
take place at different time points, and thus, all of genetic 
interactions might be delayed. Moreover, regulatory 
intermediate activities (hidden variables), such as microRNAs, 
proteins, and metabolites, which are not always represented in 
microarray experiments, may affect gene interactions. 
Considering the effect of different time delays and unknown 
hidden variables on gene expression levels are critical issues 
and must be taken into account during mathematical modeling. 
To this aim, we developed an evolvable partially connected 
artificial neural network to generate a nonlinear model in 
which some extra nodes are added to the structure of the 
network to mimic the role of memory or internal states of the 
system that are not already captured. The interactions between 
GRN components are determined while encompassing the 
effects of unknown hidden variables and different time delays. 
The proposed method improved the GRN modeling, and 
allowed us to understand the dynamical nature of fundamental 
biological processes using a nonlinear sparse configuration.  
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