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Abstract—Nowadays the rapid development in the area of
human-computer interaction has given birth to a growing interest
on detecting different affective states through smart devices. By
using the modern sensor equipment, we can easily collect elec-
troencephalogram (EEG) signals, which capture the information
from central nervous system and are closely related with our
brain activities. Through the training on EEG signals, we can
make reasonable analysis on people’s affection, which is very
promising in various areas. Unfortunately, the special properties
of EEG dataset have brought difficulties for conventional machine
learning methods. The main reasons lie in two aspects: the
small set of labeled samples and the noisy channel problem. To
overcome these difficulties and successfully identify the affective
states, we come up with a novel semi-supervised deep structured
framework. Compared with previous deep learning models, our
method is more adapted to the EEG classification problem. We
first adopt a two-level procedure, which involves both supervised
label information and unsupervised structure information to
jointly make decision on channel selection. And then, we add
a generative Restricted Boltzmann Machine (RBM) model for
the classification task, and use the training objectives of gen-
erative learning and unsupervised learning to jointly regularize
the discriminative training. Finally, we extend it to the active
learning scenario, which solves the costly labeling problem. The
experiments conducted on real EEG dataset have shown both the
convincing result on critical channel selection and the superiority
of our method over multiple baselines for the affective state
recognition.

I. INTRODUCTION

With the development of cyber-physical systems and the
rising interest for brain-computer interaction, the need for
detecting the affective state through the human-machine in-
teraction is ever growing [1], [2]. Recent advance in smart
sensors provides the possibility to let people comfortably be
equipped with machines, which facilitates better analysis and
understanding of human affection.

Various kinds of studies have been conducted on human
affective state recognition. The first approach focuses on the
audio-visual features like facial expressions and speech [3], [4].
Even if this method brings little discomfort to the user, it may
introduce lots of artifacts, which severely impact the learning
process. The second method involves physiological signals like
electrocardiogram (ECG) [5], skin conductance (SC) [6], etc.
In addition to these periphery physiological features, recently
the advance of devices and processing system enables global
assessment of EEG signals, which are captured from central
nervous systems. Furthermore, the information from EEG sig-
nals have been proved [7] to reveal significant characteristics
regarding different affective states. The task of affective state
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recognition has extensive prospects for many real applications.
For instance, through the real-time recognition, the consultants
can make adjustment with proper topics to improve the quality
of service [8]. Moreover, it can be used as the means of therapy,
where doctors can detect the abnormal affective perturbation
and take actions accordingly.

When it comes to the data collection, multiple electrodes
are usually attached to the user’s scalp in EEG assessment
devices. The signals captured in each channel will record
the voltage change between a pair of adjacent electrodes.
The information contained in these channels, however, can
be very noisy due to a variety of artifacts, which stem from
different kinds of events, such as the discomfort brought by the
device, the interference from outside world, or just the sudden
mood change of the participant. Given the difficulty to control
these factors, the irrelevant noise they brought often severely
degrades the performance of conventional classification meth-
ods. To conquer the problem, we start with eliminating the
redundant EEG channels. In biology, brain related activities
are usually dominated by several specific areas, thus there
exist several captured regions that is incoherent to emotion.
Hence we can remove the irrelevant channels based on their
significance to reduce the data dimensionality. In this paper
we provide two reasonable options to measure the significance
of each channel. The first one is based on the reconstructed
error of feature extraction model, and the other is based on
the distance between the extracted features from the nonactive
input and the randomly features. We name this first stage as
the rough channel selection procedure.

On the other hand, it is shown in recent studies [9] that
different affective states are usually reflected by different scalp
regions. Therefore we further propose a finer-grained channel
selection to extract channels related with each affective state. In
effect, these two stages of channel selection are complementary
to each other, as to be elaborated later. By combining these
two selection procedures we propose a novel two-level channel
selection method, which can be easily integrated into our deep
structured model.

After the feature selection, we adopt the deep belief net-
work (DBN) [10] based model to handle the affective state
classification problem. DBN basically consists of the stacked
RBMs to extract high-level and representative features from
input data. Nowadays with the rapid development of the smart
sensors, the EEG data can be readily obtained by using the
light and wearable devices. Despite the convenience of data
acquisition, the data labeling procedure requires both profes-
sional knowledge and lots of manual efforts. Therefore in most
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cases only a small set of labeled samples is available, while
the majority of whole dataset is left unlabeled. For this reason
the conventional learning methods that utilize only supervised
information will result in severe overfitting. Hence we propose
a novel semi-supervised deep structured learning model which
leverages both labeled and unlabeled information. Different
from the traditional DBN [10] with separate unsupervised
and supervised stages, our model leverages label information
in feature extraction and integrates unlabeled information to
regularize the supervised training. In this way our method
jointly utilizes both supervised and unsupervised information
during the entire training process to reduce model variance.

Based on the model, we further propose an active learning
[12] technique to make the most of our learning resources.
The basic idea is to utilize the uncertainty of trained model
over each unlabeled sample to decide the sample’s potential
contribution to the model training. The selected informative
samples can guide the model to progress faster towards the
optimal direction. This work will throw light on the costly
labeling problem. Finally, to demonstrate the effectiveness, we
conduct the experiments on the DEAP Dataset [13], where
the original EEG signals are downsampled (to 128Hz) and
segmented to form the input feature vectors. The results
obtained greatly surpass the performance of multiple baselines
and meanwhile remarkably support the effectiveness in channel
selection.

II. RELATED WORK

In recent years there has been a growing interest in de-
tecting affective state through the human-machine interaction
based applications. So far there have been several existing
methods on this problem [14]-[17]. However, these works are
not designated to address the special characteristics of EEG
classification. At first, in [14]-[16], the noisy channel problem
is not well addressed. Moreover, the limited labeled samples
will severely impact the learning performance of traditional
models, as used in [14], [15], [17]. For instance, in [17], the
significant channels are selected based on the Fisher Criterion.
However, the lack of labeled samples will greatly limit the
channel selection performance, thus resulting in the mistaken
removal of some critical channels. In our proposed method, we
use RBM-based model to extract representative features and to
reduce the data dimensionality, which greatly diminishes the
impact from the scarcity of labeled data. In addition, we first
adopt a rough channel selection procedure that only utilizes
unsupervised information, which aims at removing irrelevant
channels with little structure information and reducing data
dimensionality. Based on the results from the rough selection,
we propose the affection-based finer-grained channel selection
procedure to handle the noisy channel problem.

Besides channel issues, we propose the semi-supervised
model to overcome the scarcity of labeled data. Semi-
supervised learning [11] is well known to be very effective in
cases where the dataset is mixed with labeled and unlabeled
data, and it has been widely used in multiple areas [18]-[21].
Unfortunately, we cannot directly use the traditional semi-
supervised learning framework to solve the EEG classification
problem, due to the high dimensionality of input data com-
pared with the size of training dataset. Also the traditional
feature extraction method cannot fully capture the critical
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TABLE L. TABLE OF NOTATION

Notation
Xl = {le,XZ% -~-,in}
Y= {Y17n7"'7Y7L}
Xu = {Xu1, Xug, ..., Xtm }

Meaning
the labeled samples
the corresponding labels for Xi
the unlabeled samples
visible units in RBM
hidden units in RBM
weight matrix in RBM
weight matrix for label vector
bias vector for features
bias vector for H
bias vector for label vector
feature units in generative RBM
the total number of affective states
1-out-of S vector, ythelemem is 1
the total number of channels
the specified set of labeled samples
the index for channels
the index for affective states
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factors. Hence we propose to use the semi-supervised method
based on the deep learning model [22], in which the abstract,
high-level features can be extracted through the consecutive
training over multiple layers. The higher the layer, the more
representative features it can extract from the original data.

There have been several existing works that apply deep
learning based model in EEG classification problem. For
instance, in [23], [24] DBN-based method is adopted as the
reconstructor for anomaly detection in EEG signals. In [25],
DBN is used for feature extraction and a generative RBM
acts as the final layer for supervised training. The major
drawback of these methods is that they have separate unsu-
pervised training and supervised training phases. Even if such
learning structure can utilize unlabeled data information during
the unsupervised training phase, the separate final supervised
phase can still be affected by the lack of labeled samples.
On the other hand, without the label information, the features
extracted from the unsupervised training procedure are not
always reliable. Hence, in this paper we propose the deep
structure that utilizes label information to guide the channel
selection procedure, and regularizes the supervised training
with unlabeled data and generative information in the final
classification layer.

III. DEEP STRUCTURED LEARNING APPROACH

In this section, we will first briefly describe how RBM
works in feature extraction and classification, based on which
we will propose our deep structure based learning approach. To
formalize the problem, we first introduce the notation followed
by this paper. We represent the matrices and vectors using the
upper-case letters such as X, Y, and Z. As for a matrix D,
D; ; denotes the (i,7)!" element of matrix D. D; and D ;
denote the i*" row and j*" column of matrix D, respectively.
We use lower-case letters such as d to represent indices or
scaler values. Some notation followed by this paper is listed
in Table I.

A. Restricted Boltzmann Machine

The scarcity of labeled data usually causes severe small
sample problem, as each sample contains thousands of fea-



tures. To overcome the overfitting problem resulted from direct
training on such datasets, we need to fully utilize the unsuper-
vised information. In our model, the unsupervised information
first assists in feature extraction, and then provides the con-
straints in the semi-supervised training. In this part we will
discuss the RBM-based feature extraction with unsupervised
information.

RBM is a restricted version of Markov Random Field. To
handle the small sample problem, RBM-based deep structure
aims at extracting high-level features to represent the latent
characteristics, and minimizing the information loss. As for
the affective state recognition, the training process conducted
on the high-level features with fewer dimensions will alleviate
the small sample problem. In this paper, we propose a revised
DBN-based learning model which better fits this task. Before
the exposition of our method, we will briefly introduce the
principle of RBM in feature extraction.

RBM contains two layers of variables, V' and H. V
represents the set of visible units (input features), and H
represents the set of hidden units (hidden features), which
jointly forms a fully connected bipartite graph. The model
describes the distribution of (V, H), which is defined as:

exp(—E(V, H))

P(Va H) = )
i ()
7= exp(—E(V,H)),
V,H
where the energy function E(V, H) is defined to be:
E(V,H)=-V'WH - B'vV - CcTH. )

In the above equation, W denotes the weights between
V and H. Specifically, W; ; represents the weight between V;
and H;, and B,C denote the biases for visible units and hidden
units, respectively. The denominator serves as the normalizer
for the probability distribution.

RBM is a degenerate case of Markov Random Field, which
has no interconnection between units in the same layer. In this
case the conditional distribution of each unit is independent of
others in the same layer. Hence the P(V|H) and P(H|V') are
fully factorial and given by:

P(H;|V) = sigm(W,;.V + C)),

P(V;|H) = sigm(WTH + B)), ©

where sigm(z) = (1 + exp(—x))~! is the logistic sigmoid

function.

From equation 1, the gradient of model parameters 0 =
{W, B, C} used for updating can be computed as follows:

OP(V,H)
00

B [ BV, H)| + Byl o B(V, H)),
“)
where the first term on the right side of equation represents the
expectation over the data, which can be computed by Equation
3. The second term stands for the expectation over the model
distribution, which is derived from the term Z in Equation 1
and cannot be computed efficiently. Due to the intractability
brought by the existence of Z during training, Hinton [26]
proposed the Contrastive Divergence method to address the
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issue, which performs K steps of alternating Gibbs sampling.
Usually in experiment we set the value of K to be 1, i.e., to
use only one time iteration of Gibbs sampling to approximate
the model expectation. This has shown to be effective enough
for RBM training [26].

Due to the capacity of each RBM in feature extraction, we
usually adopt the structure with stacked RBMs in deep learning
model. Specifically, once we finish the training of one RBM,
we will use the output of current RBM as the input for the next
one, and start a new training phase. Given such structure, the
RBM in higher level can extract more representative features.

B. Two-level Channel Selection Method

Channel selection problem is in effect a special case of
feature extraction. Different from direct feature extraction by
RBM, we are provided with very useful prior knowledge to
determine the critical features by the partition of channels.
In the affective state recognition, there exist many irrelevant
channels which bring noise to the classification. Furthermore,
as revealed in current studies [9], the different affective states
may be reflected in different scalp regions. Due to these
considerations, we come up with a two-level channel selection
method, as shown in Figure 1 (a). This structure of channel
selection can be easily integrated into the whole proposed deep
learning framework.

Given the input data, we implement the channel selection
procedure in two stages. At the first stage, we train different
RBMs for each channel only using unsupervised information
and roughly determine the relevant channels for the classi-
fication. Specifically we have two strategies to implement
this procedure. The first strategy is to measure the RBM
reconstructed error. The lower error will reflect the capacity
of the model to successfully capture the structure of data
distribution in the corresponding channel. The second strategy
involves using zero-stimulus method mentioned in [25], where
the all-zero features are used as input to the trained stacked
RBM model. After this we measure the response, which is
defined to be the distance between the value of resulted
hidden units and random hidden units. With either strategy
adopted, this step is based on the fact that the input data with
little unsupervised structure information, thus irrelevant to the
recognition, will randomly update the model parameters. In
our experiment we follow the second method. To notice, here
we choose a relatively large number u; of selected channels
from the ranking list of corresponding measurement, in case
we remove any potentially meaningful channels. After this,
extracted features from the selected channels are collected and
used as the input for the second level finer-grained channel
selection procedure.

As revealed by recent studies [9], the regions that most
significantly reflect each affective state are different. Hence
we propose a finer-grained affection-based channel selection
method. Given the output from the first level, we still train
different RBMs for each selected channel. After training, we
compute the extracted features of labeled samples in each class.
Then we calculate the proposed significance measurement of
each channel k, regarding samples from certain class C"
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where h(i) represents the extracted feature of i*" sample, or
the output of stacked RBMs, h is the mean vector of extracted
features for all labeled samples, and h¢ is the mean vector of
extracted features for all samples from class C. Intuitively, the
nominator represents the strength of response given the input
data in the specified class. The higher the value the larger
the distance of response between the data in class C' and the
whole dataset. On the other hand, the denominator measures
the distance of response between samples in class C' and the
centroid of class C, which stands for the inner-class variance.
Hence, the high ratio of ChanSig ¢ displays the salience of
the samples from class C' in channel k.

After the calculation, we rank the value of all channels,
and select top us channels from each state to represent the
significant characteristics of the corresponding affection. To
simplify, we extract same amount of channels from all states.
Assume we have totally S states, after second level we will
obtain the features from us x S channels.

After uo channels are extracted for each state, we add
a consensus layer on top of previous two-level structure to
combine the channels from different classes. Specifically, the
outputs from us X a channels are collected and jointly serve as
visible units in the consensus layer. As for each hidden unit,
it should not be activated by the visible units from multiple
classes. Hence we add a regularizer on the loss function for
the RBM layer as follows:

L=-PWV,H)+AY ][>

i C jeC

2
Wi ©)
where A controls the weight of the regularizer, and the product
of weight sums of different affective states is adopted to attain
the inter-classes weight sparsity.

In our EEG problem, the procedures of rough channel
selection and the affection-based selection are complementary
for each other. As the first level procedure does not involve
the supervised information, it cannot perfectly capture the key
features that make difference on participants’ affection. On the
other hand, even if the second level procedure leverages the
label information, it cannot be directly used on the original
input, due to the scarcity of labeled samples. Hence, to select
the critical channels based on a small set of labeled data,
we first utilize the larger unsupervised dataset to roughly
make decisions and reduce the data dimensionality as well.
After this, we use the supervised information to guide a more
accurate label-related selection procedure at the second level.

The whole deep learning architecture will be established on
top of the above two-level channel selection structure, which
results in a marked mitigation of the noise effect and a great
reduction of data dimensionality. In addition, each level can
be extended to deep structure with stacked RBMs.

C. Semi-supervised Generative Model

Given the high-level representation obtained from RBMs,
the direct supervised learning would still result in overfit-
ting, for the small sample problem and the relatively high
dimensionality of extracted features. Therefore, we propose to
involve both supervised and unsupervised information in the
classification layer.
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Based on the extracted features, we build the final classifi-
cation layer by a generative RBM model [27], using the output
from the previous stacked RBMs and the label information
jointly as visible units. Thus the visible layer consists of feature
units and additional S’ units to represent the one-out-of-S
structured label information. The Figure 1 (b) depicts such
RBM structure. From the generative model, we can estimate
the weights and biases by minimizing the combination of
discriminative loss, generative loss and unsupervised data loss,
as follows:

Hlein L = Lyis + aLgen + BLunsupy (@)
where 6 denotes the set of model parameters, Lgis, Lgen
and Lynsup stand for the objective functions for discrimi-
native training, generative training and unsupervised training
respectively, and « and [ are hyper-parameters that con-
trol the weights for generative learning and unsupervised
learning, respectively. Compared with discriminative learning,
generative learning usually results in smaller variance of the
estimated parameters [28]. It takes into account of the data
distribution during training and on the other hand, the variance
is the expectation with respect to data. Hence the generative
training objective can be viewed as a regularizer in Equation
7. In addition, the unsupervised learning will provide further
constraint on the training and lower down the variance. As for
the concrete loss function of each component, we have:

Lais = = Y _ logP(Yi| X),

icL
Lgen = ZlOgP(XZaK)v ®)
i€L
Lunsup = - Z logP(Xz)7
i€ul

where L represents the set of labeled data, uL represents the
set of unlabeled data, X denotes the set of training samples
with each element as a feature vector, Y denotes the set of
labels corresponding to L, with each element as a scalar label
in {1,2,...5} and S stands for the total number of affective
states.

We start with the generative training, where we consider the
joint probability of features and labels. During the process, the
parameters are going to be updated according to the gradient of
Lgyep. As for each component in the loss function, the gradient
of logP(X;,Y;) can be computed as:

dlogP(X;,Y;)
00

0
= *EH\X,»,E[%E(YLXmH)}
5 ©)
+ Ey,X,H[%E(ya X: H)]a
and the energy function of generative model E(y, X, H) is

defined as:
E(y, X, H)

=-H'"WX-H"Ue,—~B"X -C"H—-D"e,,

(10)
where W represents the weights between hidden units H and
feature units X, U represents the weights between H and
label units, B, C' and D serve as biases for X, H and label
units respectively, and e, stands for the one-out-of-S' vector
with the y?* position set as 1. Compared with Equation 2,
the generative RBM model involves the connection between



H and label vector by U, and the bias for label units by D.
Hence it can be viewed as jointly using X and label vector as
the visible layer in traditional RBM model.

The second term on the right side of Equation 9 represents
the model expectation. Due to its computational intractability,
we solve it by Contrastive Divergence, which is the stochastic
approximation of the gradient. As X and label vector are
independent of each other, the conditional distributions are
same with Equation 3, except for:

P(y|H) = sigm(U H + D,),

11
P(H;ly) = sigm(Ui.ey + C;). (v

With further marginalization and derivation, we can obtain
that:

exp(Dy + 3, log(1 + exp(oy (X))

Py|X)= ,
= S cap(Dy + 5, g1+ caploy 5 (X))
y'e{1,....K}
(12)
where the function o, ;(z) is defined as: oy ;(z) = C; +

Zk Wj,ka- + Uj7y.

Then during the discriminative training, the gradient of
each component in loss function, logP(Y;|X;) can be com-
puted from Equation 12, as:

dlogP(Yi|X;

i ) _ ;sigm(oyi_’j(xi))‘w

o0
. 0oy i (X;
_ ZSzgm(oy/J(Xi))P(wa’?)%.
3y’
(13)

After the discriminative and generative training, it comes to
the question how to utilize the unsupervised information. As
the unlabeled data provides feature information, we can use
the current trained model to infer the label value according to
Equation 12. Based on the marginalization of P(X,Y), the

gradient of logP(X;) can be computed as:
OlogP(X;) 0
T - _EyIX'L [EH‘yvxi [%E(yv Xi, H)” (14)

0
+]EL/,X,H[%E(y7 X7 H>]7

where the first term on the right side can be calculated either
as the weighted average over P(y|X;), or from the simple
sampling of P(y|X;).

D. Semi-supervised EEG Classification with Two-level Chan-
nel Selection

Given a set of 7T-channel labeled training samples
Xl {Xl,,Xly,....XI,,} with the corresponding labels
Y = {Y1,...,Y,}, and a set of unlabeled samples Xu =
{Xuy, Xug, ..., Xumy,}, we use them jointly as the input to
the training procedure through the channel selection and the
classification. With the trained model, we can predict the label
for test data in terms of Equation 12. The whole procedure is
given in Algorithm 1. In the EEG affective state classification,
the conventional training methods are usually plagued by
the large variance due to the scarcity of labeled data. In
our proposed framework, we mitigate the overfitting on two
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Fig. 1. The Framework of the Proposed Model. The two-level channel
selection procedure (a) and the final generative classifer (b) are included.
The model basically consists of RBM layers, with the dashed line denotes the
structure of stacked RBMs.

Algorithm 1: Semi-supervised EEG Classification

Input: Labeled training set X! and Y, unlabeled samples X u, the
number of selected channels w1 at the rough selection stage,
and wuo at the finer-grained selection stage

Output: The labels Yu for samples in Xu

for i < 1to T do

2 Train the stacked RBMs on the " channel;

Calculate the zero-stimulus response;

Select the top w1 channels with the highest response;

Collect the extracted features from selected w1 channels;

for i < 1 to u; do

Train stacked RBMs on the 3" selected channels;

for j < 1to S do
Calculate the Significance Measurement of itk channel to
jth state by Equation 5;

-

w
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14

Select the top ug channels for each state;

Collect the extracted features from selected uo * S channels;

Train the consensus layer with respect to Equation 6;

Train stacked RBMs on top of the consensus layer;

Use the extracted features from last layer to train the combinatorial
model following Equations 9, 13 and 14;

Classify X u based on trained model following Equation 12, and store
the results at Yu;

return Yu;

=
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stages, the feature extraction stage and the final classification
stage. During the first stage, we train RBMs to learn features
from each channel, and simultaneously implement our two-
level channel selection procedure. After we select the critical
channels and add the consensus layer to combine different
classes, the dimensionality has been greatly reduced. Thus
at this point we can directly use RBMs to extract high-level
features. On the other hand, the final classification stage mainly
involves the training on a generative RBM model with the
combinatorial objectives. This stage not only depends on the
supervised information, including the discriminative and the
generative learning, but it also uses the unsupervised data to
regularize the training, thus to further alleviate the overfitting
problem brought by the scarcity of labeled data.



E. Reinforced Training Using Active Learning

Now we are going to extend our work a little bit further.
With the collected EEG signals, usually it is expensive to
hire experts to label manually. Assume we have some budget
on labeling, then the question arises whether the different
sample selection will result in different contribution to the
training. The answer is definitely positive. For instance, if all
the chosen samples lie in the central area of the same class,
close with each other, they can provide little useful knowledge
to the training. Hence, in this part we propose an extended
application of our method in active learning scenario, to make
the most of our limited budget.

After the training stage, we can quickly predict the label
for a test sample by following Equation 12. With careful
scrutinization, we can notice that the result is sometimes
unreliable, that is, the value of P(y|X) for different label y
can be very close. On the contrary, if the probability value
for certain label y dominates the others, we can agree that
the model is quite confident with its decision. In this way,
we conclude that the sample in the former case contains more
uncertainty, and thus the learning with its true label can result
in a faster advance to the more accurate decision boundary. To
measure such kind of uncertainty, we can utilize the function
of entropy:

Uncertainty(X) = — Z P(y|X)logP(y|X). (15)

y=1,....5

To involve the active learning procedure in the proposed
model, it is first trained with the currently available dataset.
After this, we rank all the unlabeled samples based on its
uncertainty, and select a batch in proper size from the top.
Then true labels are requested for the selected samples. Once
we obtain the additional supervised information, the model
can be retrained with a larger labeled dataset. We repeat this
process until running out of budget. The whole procedure is
given in Algorithm 2. As the “uncertain” samples can guide
the decision boundary to progress towards the right direction,
the active procedure can greatly speed up the model training.
Notice that if each time we only selected one sample for
inquiry, it would become a degenerative case with only a single
sample as new added information in each round. Even if it may
slow down the training, it is still desirable with small dataset
and very limited budget.

Algorithm 2: The Model with Active Sample Selection

Input: Labeled training set XI and Y, unlabeled samples Xu,
available budget M, batch size BS
Output: The labels Yu for samples in Xu, enlarged labeled set XI
and Y
1 while budget enough for another round do
2 Train the model with X7, Y and Xu, according to Algorithm 1;

3 Select the top B.S samples from Xu based on uncertainty,
according to Equation 15;

4 Ask for labels regarding the selected samples, transfer them from
Xu to X, add information to Y

5 deduct the cost from M;

6 Train the model with X1, Y and Xu, according to Algorithm 1;
7 return Yu, Xl and Y,
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IV. EXPERIMENTS

In this section we implement our method on the DEAP
Dataset [13], which provides EEG data especially for emo-
tional analysis. The data was collected from 32 participants
as they watched 40 one-minute long music videos. The labels
were obtained from the surveys, with each of 40 videos rated
according to arousal, valence, dominance and like/dislike. To
fit the input of our affective state recognition problem, we pre-
process the data according to [13] and obtain the downsampled
version(128Hz), with 8064 features at each channel, and totally
40 channels. As for the EEG classification, we focus our view
on whether the participants like or dislike the videos. As this is
a binary classification problem, we name two states hereinafter
as positive class and negative class for simplicity.

A. Evaluation on Affective State Recognition

During the process of data acquisition, it is commonly
found that some participants in good mood may rate most
videos with strongly positive scores while some others in
really bad mood may give lower ratings. In this way, the
individual variability and data acquisition errors will finally
result in label imbalance. Different from traditional datasets,
the measurement of accuracy is not able to well capture the
classification performance for such skewed dataset, as the
ratio value will be dominated by the majority class. Hence,
we adopt the area-under-the-curve (AUC), i.e., the area under
receiver operating characteristic (ROC) curve, to evaluate the
classification result. ROC curve demonstrates the relationship
between the true positive ratio and the false positive ratio, with
the AUC value ranging from O to 1. The higher AUC value
indicates the better classification performance and the greater
robustness. Especially, we divide data into two halves and
hide the labels for one half, which serves as the unsupervised
information. To show the superior effectiveness, we compare
our method with the following baselines:

Support Vector Machine (SVM): SVM serves as the first
baseline method in our experiment. The features from EEG
signals are directly used as the input to supervised SVM
classifier. Through the comparison with SVM, we hope to
show the necessity of feature extraction in EEG classification.

Principle Component Analysis (PCA)+SVM (PSVM): P-
CA [29] is an unsupervised feature extraction method by
maximizing the data variance. In this baseline method, the
EEG features are first processed using PCA on each channel.
Then SVM is conducted as the supervised classifier for the
affective state recognition. By comparing with PSVM, we
can demonstrate the effectiveness of channel selection on
improving the classification performance.

PCA+Fisher Criterion+SVM (PFSVM): Similarly we first
use PCA to extract features on each channel. After this
Fisher Criterion [17] is implemented to select critical channels.
Finally SVM is adopted as the supervised classifier for the
affective state recognition. The comparison with PFSVM can
show the remarkable performance of our method on feature
extraction procedure using RBMs, as well as the effectiveness
of our final semi-supervised classifier model.

DBN-+Fisher Criterion+RBM (DFRBM): To compare with
previous deep learning model, in this implementation we use



TABLE II. THE PERFORMANCE OF AFFECTIVE STATE RECOGNITION
BY AUC SCORE
ID | SVM | PSVM | PFSVM | DFRBM | DLM | semi-DLM
sO1 | 0.677 | 0.670 0.631 0.720 0.830 0.837
s02 | 0.692 | 0.738 0.637 0.714 0.810 0.822
s03 | 0.680 | 0.517 0.615 0.724 0.745 0.780
s04 | 0.636 | 0.535 0.690 0.667 0.755 0.775
s05 | 0.604 | 0.631 0.510 0.792 0.808 0.820
s06 | 0.729 | 0.594 0.515 0.688 0.782 0.775
s07 | 0.657 0.656 0.516 0.688 0.820 0.822
s08 | 0.547 0.552 0.702 0.627 0.750 0.762
s09 | 0.616 | 0.530 0.515 0.708 0.832 0.832
s10 | 0.670 | 0.525 0.747 0.599 0.766 0.772
sIT | 0.708 0.606 0.615 0.626 0.770 0.815
s12 | 0.596 | 0.566 0.560 0.720 0.765 0.796
s13 [ 0.643 0.625 0.536 0.641 0.737 0.820
sl4 | 0.657 | 0.531 0.571 0.590 0.744 0.762
s15 | 0.637 | 0.748 0.560 0.681 0.766 0.806
sl6 | 0.667 | 0.556 0.600 0.712 0.720 0.742
s17 | 0.715 0.625 0.630 0.596 0.714 0.774
s18 | 0.583 0.531 0.566 0.729 0.765 0.830
s19 | 0.546 | 0.657 0.604 0.676 0.770 0.844
s20 | 0.619 | 0.563 0.635 0.725 0.752 0.826
s21 | 0.626 | 0.625 0.594 0.678 0.721 0.788
s22 | 0.657 0.692 0.637 0.630 0.744 0.770
s23 | 0.604 | 0.660 0.707 0.687 0.710 0.769
s24 | 0.600 | 0.640 0.596 0.635 0.700 0.781
s25 | 0.677 | 0.531 0.697 0.710 0.712 0.705
$26 | 0.677 | 0.552 0.635 0.673 0.752 0.832
s27 | 0.657 | 0.680 0.546 0.625 0.760 0.820
s28 | 0.667 | 0.606 0.771 0.682 0.722 0.793
s29 | 0.570 | 0.636 0.531 0.768 0.776 0.810
s30 | 0.707 | 0.626 0.525 0.736 0.769 0.848
s31 | 0.681 0.797 0.680 0.662 0.774 0.782
s32 | 0.687 | 0.667 0.576 0.635 0.797 0.852

DBN to lower the dimension of data in each channel. Then
Fisher Criterion is used to select critical channels, which
are then combined and fed into a supervised RBM for the
classification.

Besides the above baseline methods, we also implement
our method in two versions, deep learning model (DLM) and
the semi-supervised deep learning model (semi-DLM). The
semi-DLM is the complete model, while the DLM uses only
supervised information in the training of final classification
layer, that is, with only the discriminative and generative
training objectives in Equation 7. We hope to testify the
positive impact from the unsupervised regularization through
the comparison with DLM .

The experimental results with AUC scores of our method
and baseline methods are listed in Table II. We can observe
that our semi-DLM method very well outperforms baseline
methods. Given the results of SVM, we can conclude that
feature extraction is necessary for EEG classification. On the
other hand, the performance of PSVM and PFSVM shows that
the method of PCA and Fisher Criterion cannot successfully
extract the meaningful features from the small dataset. For
some of the participants, these two methods even generate
worse results than simply SVM. This is resulted from the
mistakenly selected critical features. On the contrary, by using
deep learning model, we can obtain the representative features
that is crucial for the successful affective state recognition. In
addition, with the comparison of three columns, we arrive at
a conclusion that the model with two-level channel selection
and unsupervised regularization surpasses the traditional deep
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models. It also shows that the unsupervised structure is ben-
eficial for both feature extraction and classification with less
overfitting.

Then we implement our method involving active learning
procedure. Specifically, for each participant, we fix 10 samples
as the test data, and use 10 of the remaining 30 for the initial
training. In each round we determine which samples to label,
by selecting top 2 most beneficial ones as a batch according to
Equation 15. Then we retrain the model with the new added
samples, and repeat this procedure five times. Totally 5 batches
of 10 samples are selected as the additional labeled training
set. To demonstrate its effectiveness, we compare it to the case
with random selection. We still fix the test set, and use the
identical data with active case for the initial training. Besides,
we randomly pick 10 others from the remaining 20 samples,
and conduct training. We repeat this random training process
10 times and calculate the average. The average AUC scores
over all participants are given in Table III. The first row denotes
the maximum AUC score generated from the random selection
in 10 times, while the second row denotes the averaged AUC
score in 10 times. The third and fourth rows denote the same
measurement with 4 more samples used for the initial training.
However, the additional training set is decided by the first
two batches of active learning, and after this we only select
6 more labeled samples for training. As for our active-DLM
model, which does not involve randomness, we only provide
the final performance in the row of average. From the Table
IIT we can easily observe the outstanding performance with
the active sample selection.

TABLE IIL THE PERFORMANCE OF THE ACTIVE LEARNING
Methods | DLM | semi-DLM | active-DLM
max 0.788 0.800 -
avg 0.767 0.789 0.808
max2 0.794 0.806 -
avg?2 0.779 0.796 0.808

B. Evaluation on Channel Selection

In this part we conduct the experiment respectively on each
level of channel selection, to demonstrate the effectiveness of
our proposed two-level structure.

Starting form the first level rough channel selection, we
visualize the result in Figure 2. The method of zero-stimulus
response is adopted as the measurement for channel selection
and we pick top two most critical channels. As for each visual-
ized channel, we choose two most significant features from the
RBM output as the coordinate axis. Here the measurement of
feature significance is defined as: Sig(i) = (3 ycpq R(X)i—
> xere R(X)i)?, where L1 denotes the set of samples in
the positive class, L2 denotes the set of samples in the
negative class, and R(X) represents the extracted features of
sample X from RBM. Basically this measurement describes
the difference of feature ¢ between samples in positive class
and in negative class. By using the most significant features,
we hope to clearly show the contribution of channel selection
procedure in the affective state recognition.

From Figure 2 (a) and (b) we can observe that, even if
the unsupervised channel selection process can automatically
capture the salient data layout, it may not be able to pick the
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Fig. 2. The Visualization of Selected Channels. The Figure(a) and (b)
represent the feature distribution in the detected top two most critical channels
at rough selection level. Figure(c) and (d) shows the feature distribution in the
detected top two most critical channels for positive class at second selection
level. The vertices in red color and green color represent the samples in
positive class and negative class, respectively.

channels where the samples from different classes are well
separated. This is due to the incapability of the unsupervised
learning in catching the crucial difference between different
classes, which necessitates the guidance by labels during the
second level channel selection.

After the supervised information is leveraged, we show
the second level selection results in Figure 2 (c) and (d). we
can notice that our finer-grained selection method can easily
determine the channels that contain representative features for
each affective state.

To recap, the results reveal that the channel selection proce-
dure is meaningful and necessary for the ultimate classification
task. Besides, the comparison between Figure 2 (a), (b) and
Figure 2 (c), (d) reflects that the performance from the rough
selection has been very well enhanced by the affection-based
selection. Reversely, the first level selection is also necessary
for the second level selection, as it greatly reduces the data
dimensionality, and thus enables the second level procedure to
progress even with limited number of labeled samples.

V. CONCLUSIONS

In this paper, we propose a novel semi-supervised method
for the affective state recognition using deep learning model.
The method very well combines the supervised and unsu-
pervised information for both feature extraction and affective
state classification. During the feature extraction procedure,
we come up with a two-level channel selection structure. Due
to the lack of labeled samples, at first level we only use
unsupervised information to roughly make decisions. Then we
conduct a finer-grained selection with the guidance of label
information. After we successfully extract the representative
features from the constructed deep layers, we build a genera-
tive RBM model as the final classifier, jointly regularized by
generative and unsupervised training objectives. Finally, we
extend our proposed model to the active learning scenario,
which solves the costly labeling problem. The experimental
results reveal that our model surpasses extensive baselines in
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classification and our proposed reinforced process outpaces the
random labeling training by a decent margin.
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