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Abstract—The detection of heart rate variability (HRV)
via cardiac auscultation examination can be a useful and
inexpensive tool which, however, is challenging in the presence
of pathological signals and murmurs. The aim of this research
is to analyze acoustic cardiac signals for HRV and murmur
detection. A novel method based on hierarchical decomposition
of the single channel mixture using various nonnegative matrix
factorization techniques is proposed, which provides unsuper-
vised clustering of the underlying component signals. HRV is
determined over the recovered normal cardiac acoustic signals.
This novel decomposition technique is compared against the
state-of-the-art techniques; experiments are performed using
real-world clinical data, which show the potential significance
of the proposed technique.

Keywords-Heart rate variability; cardiac sounds; Blind
source separation; Nonnegative matrix factorization

I. INTRODUCTION

The beat-to-beat interval variation called heart

rate variability (HRV) is routinely determined from

electrocardiogram (ECG) signals recorded over long- or

short-time periods. The HRV measured over long-time

recordings can be less practical in the sense of maintaining

standardized recording conditions for long periods of

time in certain time critical applications. Therefore, HRV

determined over short-time recordings has drawn more

attention in research community [1]. However, irrespective

of long- or short-time, ECG-based HRV detection is costly

and time consuming, and may not be feasible in certain

scenarios such as, infield or rural areas in underdeveloped

countries, etc.

The feasibility of measuring HRV determined over

normal cardiac sounds recorded through stethoscope was

recently studied in [2]. However, cardiac conditions often

produce abnormal findings in physical examinations that

include pathological cardiac sounds and murmurs which,

hinder the HRV detection over normal cardiac sounds.

The essence of separating the normal cardiac sound

from abnormal sounds and murmurs is twofold. On the

one hand these abnormal findings usually provide clues

to the underlaying pathophysiology, and their careful

interpretation may results into successful diagnosis of the

cardiac conditions and disease management [3]. On the

other hand a clean normal cardiac sound facilitates the

detection of HRV. However, cardiac sounds and murmurs

are faint and they are separated less than 30ms. The

deciphering of these sounds through human analysis using

ordinary stethoscope is hard. The ability to master the

proper auscultation skills is a challenging task and as a

consequence young doctors are losing interest in learning

the auscultation skills [4]. According to [5], numerous

studies have shown that more than 80% of the referrals

(based on ordinary stethoscope examination) for further

examinations such as ultrasound, which cost $300 to

$1000 (in the United States) are false, causing unnecessary

anxiety and cost. However, computer-aided auscultation

which implies recording and analysis of cardiac sounds

and murmurs, can enhance the quality of auscultation [5].

According to [6], cardiac sound analysis can be generally

categorized as: 1) segmentation, whereby the cardiac cycle

is determined; 2) feature extraction, whereby the distinctive

characteristics are computed, and 3) classification, whereby

the nature of the cardiac sounds is determined. Many

methods have been developed of cardiac sounds analysis

where a reference ECG signal was used (such as, see e.g.,

[7]).

However, in this paper, we discuss separation and

analysis of acoustic cardiac signals without any reference

ECG signal. A review on the cardiac sound analysis

techniques developed recently was presented in [8]. A

cardiac sound segmentation algorithm based on energy

plot was proposed in [9]. [10] has proposed segmentation

of the cardiac sound using wavelet decomposition for

feature extraction. A support vector machine (SVM) was

used for the classification of the normal and abnormal

cardiac sounds. Localization of the cardiac sound in
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respiratory signal was proposed in [11] using singular

spectrum analysis (SSA), a subspace analysis technique.

Separation of murmurs from the cardiac sound was

proposed in [12], where, SSA technique was applied.

Ensemble empirical mode decomposition (EEMD) has been

applied in heart sound segmentation and extraction [13].

Matrix decomposition such as singular value decomposition

(SVD) and QR decomposition (QRD) techniques were

applied to the time-frequency representation produced by

continuous wavelet transform (CWT), for cardiac sounds

and murmurs classification [14]. Analysis of the cardiac

sounds has been carried out in many research works thus

far. However, most of these techniques underperform in

the actual real scenarios. Therefore, recovery and analysis

of the cardiac sounds in real scenarios such as under the

influence of abnormal cardiac sounds, murmurs, noise, etc.,

needs further investigation.

The aim of this paper is to investigate the potential

application of nonnegative matrix factorization to the single

channel blind source separation (BSS) of the cardiac sounds

and murmurs. Nonnegative matrix factorization (NMF) [15]

technique has been widely used in the single channel BSS

of audio streams, drum transcriptions and musical data [16].

NMF technique has also been recently used in the BSS of

the cardiac and respiratory signals in [17], [18], [19]. NMF

technique is generally applied to the magnitude spectrogram

in order to produce a low dimensional approximation of

the original data, in the form of two non-negative factors.

One matrix having the spectral basis vectors and the second

matrix containing time-variant gain information for each

basis vector. Based on different NMF techniques, a multi

level decomposition method is proposed in this paper. The

first level decomposes the mixture into: 1) partial normal

cardiac sounds, and 2) partial abnormal cardiac sounds and

murmurs, by using biomedical characteristics of the cardiac

sounds. In the subsequent levels, the decomposed compo-

nents are further decomposed into underlying clusters by

applying NMF in each stage. A novel acoustic cardiac signal

(ACS)-based HRV detection method is also proposed. The

main contributions of this research work are the followings:

1) Separation of normal cardiac sound from interfering

murmurs and noises.

2) Cardiac sound segmentation and localization of the

first heart sound (S1) and second heart sound (S2).

3) A novel heart rate variability (HVR) detection method

based on S1S1 (lub-lub), S2S2 (dub-dub), S1S2 (sys-

tolic), and S2S1 (diastolic) intervals variations.

4) Initialization of various matrices in NMF through a

new scheme.

The rest of the paper is organized as follows: The charac-

teristics and generation mechanism of cardiac sounds and

murmurs is briefly discussed in Section II. The separation

and analysis method is discussed in Section III. Section

IV gives the experimental details and results which are

discussed in Section V. Section VI concludes the work.

II. CARDIAC SIGNALS

In this Section we briefly discuss the characteristics and

generation mechanism of cardiac sounds and murmurs.

For more details, refer to [3]. We also show the coherence

between the generated acoustics and electrical signals.

A. Cardiac cycle

In blood circulation system, the cardiac cycle is the

systematic and precisely timed electrical and mechanical

events which result into rhythmic atrial and ventricular

contractions. A cardiac cycle consists of two phases: 1) a

systole, refers to ventricular contraction, and 2) a diastole,

which refers to ventricular relaxation and filling. Generally

the duration of systole remains constant during a cardiac

cycle whereas, the length of diastole varies with the heart

rate [3].

B. Cardiac sounds

Various cardiac sounds are produced during a cardiac

cycle, resulting from the mechanical vibrations of different

parts of the heart. During the process, the various vibrations

also produce electrical signals called ECG due to depolariza-

tion and repolarization processes [3]. The coherence between

the ECG and acoustic cardiac signals is illustrated in Fig. 1.

In the followings we discuss the relevant cardiac sounds.

Figure 1: (a) shows ECG signal and (b) shows cardiac

acoustics signals. Various intervals are also illustrated.

1) First heart sound: The first heart sound (S1) is pro-

duced during early systole by the closure of the mitral

and tricuspid values. The mitral closure which is normally

preceded by tricuspid closure are separated by 10ms. S1 is

a low-medium frequency sound.
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2) Second heart sound: The second heart sound (S2)

is produced as a result of the closure of the aortic and

pulmonic valves. S2 is a high frequency sound and has two

components: 1) aortic (A2), and 2) pulmonic (P2). A2 and

P2 are normally heard; one sound during expiration and two

different sounds during inspiration.

C. Murmurs

During hemodynamic and/or structural changes the lami-

nar blood flow can become turbulent and produce high fre-

quency audible noises called murmurs. Although murmurs

can be nonpathological (for instance, in children), most of

the times they indicate different valvular diseases depending

upon their intensity, shape, pitch, location, timing, etc. [3].

III. SEPARATION AND ANALYSIS OF CARDIAC SOUNDS

A. Signal model

We model the various cardiac sounds and murmurs in the

single channel phonocardiographic signal, i.e. the observa-

tion mixture, through the following mixing model:

x̃[n] =

I∑
i

aiyi[n] + ηw[n] (1)

where x̃[n] represents the discrete-time observation mixture

signal and yi[n], ai represent the ith source and its am-

plitude, respectively. ηw[n] and I represent white Gaussian

noise (arising during signal acquisition etc.), and total num-

ber of sources, respectively. For simplicity, in our mixing

model (1), we assume that cardiac sounds and murmurs

combine linearly [20]. In our work, i ∈ {c,m}, where c, m
represent the cardiac sound and murmur signal domains,

respectively.

B. Preprocessing

1) Centering and normalization: To remove any direct

current (DC) offset which carry no information, and to

normalize the signal, we perform the following:

x =
x̃− μ

σ
, (2)

where μ = 1
N

N∑
n=1

x̃[n], σ =

√
1
N

N∑
n=1

(x̃[n]− μ)2, N , and

x are mean, standard deviation, length of the signal, and

mean-normalized signal, respectively.

2) Time-domain filtering: To remove out-of-band noise

we use a 3rd order bandpass digital Butterworth filter.

3) Spectrogram formation: A simple method of spec-

trogram generation is short-time discrete Fourier trans-

form (STFT) where a time-domain signal is divided into

small frames using a suitable window function, and a

discrete Fourier transform is performed on each frame.

X[t, f ]:=STFT{x[n]} denotes the complex spectrogram of

the signal x[n]. t and f represent time index and frequency

bin, respectively. X = ||X[t, f ]|| represents the magnitude

spectrogram of the signal x[n].
4) Denoising: The time-frequency analysis can be ex-

ploited to apply the classical denoising techniques such

as soft thresholding, overlapping group shrinkage (OGS),

Wiener post processing, block thresholding, etc. We use

OGS denoising technique. For more details we refer the

reader to [21].

C. Basic non-negative matrix factorization

NMF gives parts-based decomposition and imposes the

only constraint of non-negativity. Efficient algorithms for

NMF computations have been developed in [15]. NMF

decomposes a nonnegative matrix X ∈ R
F×T into two

nonnegative factors W ∈ R
F×K and H ∈ R

K×T , where,

K < min{F, T}, that is

X+ = W+H+ + E (3)

where V+ indicates that the matrix V is nonnegative and E
represents reconstruction error. Different cost functions are

used for minimizing the reconstruction error. We use a cost

function which is the squared Euclidean distance between

X and WH , being defined as

DEUD = ||X −WH||2F =
∑
tf

(Xtf − (WH)tf )
2
, (4)

where || · ||2F denotes Frobenius norm. The lower bound of

the measure (4) is zero and it is optimized if X = WH
or E = 0. The corresponding multiplicative updates which

converge to local minima are given as

W ←W � XHT

WHHT , H ← H � WTX
WTWH

, (5)

where D � E denotes element-wise multiplication, and D
E

denotes element-wise division.

D. Blind source separation method

We address the separation of normal cardiac sounds

and murmurs as BSS problem. We decompose the time-

frequency representation of the mixture signal into different

components (clusters) using NMF technique. Supervised

NMF based BSS provides good separation which requires

training data of the mixing sources. However, cardiac

sounds and murmurs are highly nonstationary, and it is

hard to acquire training data of normal cardiac sounds in

the presence of abnormal sounds and murmurs. Therefore,

we aim to develop an unsupervised technique without any

training data, by exploiting the biomedical characteristics

of the cardiac sounds. As discussed in Section II, the heart

produces low frequency sounds during normal operation,

however, during different cardiac conditions higher

frequency sounds (murmurs) are produced. Therefore,

it can be hypothesized that: 1) The lower frequency
sounds show normal cardiac operation whereas the higher
frequency sounds signify abnormal cardiac activities. We
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also know from the literature [3] that normal cardiac sounds

have a significant portion of their energies below 150 Hz.

Therefore, we can state another hypothesis that: 2) Most
of the mixture signal below 100 Hz partially signifies the
normal cardiac operation. We use mixture signal below

100 Hz [17], as a reference to the normal cardiac sound,

in our separation method, which we denote as yref .

An overview of the proposed separation method is illus-

trated in Fig. 2. Motivated by the Wavelet decomposition

Figure 2: An overview of the proposed method, showing two

levels of decomposition.

method, we decompose the input signal in a hierarchical

manner using different NMF techniques. In each decompo-

sition level we apply NMF with K = 2, i.e., first level

of decomposition produces two components, the second

level produces four components and so on. We denote

each decomposition level with ϕDNMF , showing the ϕth

decomposition level and ϕ = {1, 2, 3, ...}. As shown in

Fig. 2, in 1DNMF , we use nonnegative matrix partial co-

factorization (NMPCF) which was used in the recovery of

drum source, where a drum-only matrix a priory and a

music matrix (mixture) were simultaneously decomposed by

sharing some factors [22]. The idea of co-factorization is

to use the training data of one of the two mixing sources,

a priory, to simultaneously factorize two matrices by co-

sharing some of the components. Here, we use yref , a priori,
to separate the mixture into two components by optimizing

the following cost function.

min
Wc≥0,Wm≥0,Hc≥0,Hm≥0,Href≥0

1

2
||X −WcHc −WmHm||2F

+
γc
2
||Yref −WcHref ||2F +

α

2
||Wc||F2 +

β

2
||Wm||F2

(6)

where, Wc, Wm, Hc, Href , and Hm represent the required

basis spectra and time varying gain information (coefficients

weights) of the cardiac sounds and murmurs, respectively. α
and β are the regularization parameters whereas parameter

γc controls the weights of the shared factor. To solve (6),

multiplicative update rules are derived similar to [22]. The
1DNMF is summarized in Algorithms 1. In step (2) of

Algorithm 1, the various matrices are generally initialized

with nonnegative random values. However, we propose a

novel scheme to initialize these matrices as the following:

Wc =
1

T

T∑
t=1

||Yref [t, :]|| (7)

Wm =
1

T

T∑
t=1

||X[t, :]− Yref [t, :]||, (8)

The proposed initialization scheme in (7) and (8) provides

Algorithm 1 NMF-based BSS

1: Compute magnitude spectrograms X and Yref

2: Initialize the matrices Wc, Wm, using (7) and (8)

3: Iteratively update each matrix using update rules for Wc,

Wm, Hc, Hm and Href for a predefined number of

iterations

4: Estimate magnitude spectrogram of the ith source as

X(i) = WiHi

better results as compared to random initialization scheme

in terms of reconstruction error and time of convergence.

After first level of decomposition the magnitude of the

mixture spectrogram X can be approximated as

X ≈WcHc +WmHm (9)

where WcHc and WmHm are the magnitude spectrograms

of the partial cardiac sound and murmurs, and can be

denoted as ′Xc and ′Xm, respectively. Prior to next

decomposition stage, we approximate cardiac sounds

and murmurs magnitude spectrograms from the original

mixture spectrogram X by applying time-frequency

masking discussed in Section III-G, in order to minimize

the reconstruction error. The approximated spectrograms,

Xc and Xm are again decomposed in the following

decomposition level using basic NMF technique discussed

in Section III-C. In the 2DNMF we choose K = 2, for

both of the spectrograms.

Each decomposition level produces different features (i.e.,

components signal) in the given mixture signal. For instance,

the 1DNMF separates normal and abnormal signals. De-

pending upon the classification tool, a number of decom-

positions can be performed. In this preliminary work, we

perform only two levels of decomposition.
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E. Cardiac sounds localization

Using coefficient matrix of the separated cardiac sound,

i.e. Hc, a robust cardiac sound segmentation can be

achieved. The coefficient matrix of the cardiac sound Hc is

plotted in Fig. 5b. The peaks in Fig. 5b show the locations

of S1 and S2. We use a simple peak detection algorithm to

localize the S1 and S2, illustrated in Fig.5a.

F. HRV detection

The coefficient matrix Hc which capture the timing in-

formation of the cardiac sounds can be used to develop a

reliable HRV detection method. However, unlike the ECG

data where RR detection is trivial, Hc shows the locations

of both S1 and S2, where differentiation between them can

be challenging. The other problem in ACS-based HRV is the

S2 split into A2 and P2 during inspiration. Therefore, we

propose the following steps for ACS-based HRV detection

over the normal cardiac sounds:

1) Step 1: To mitigate the problem of erroneous peaks

and S2 splitting, we use the following moving average

filtering over a specified smoothing window.

hs[t] =
1

2Ls + 1
(h[t+Ls]+h[t+Ls−1]+ ...+h[t−Ls]),

(10)

where h[t], hs[t] and Ls represent, the normalized coefficient

(weight) vector corresponding to normal cardiac sounds,

its smoothed waveform and the smoothing window, respec-

tively.

2) Step 2: Peak detection algorithms is used to locate the

position of S1 and S2 within the smoothed waveform hs[t].

3) Step 3: Peak conditioning is performed to discard the

erroneous peaks or relocate the missing peaks. The peak

locations are used to perform segmentation which includes:

1) localizing S1 and S2, and 2) determining systolic and

diastolic intervals.

4) Step 4: Once we locate the position of S1 and S2 in

separate waveforms, we can easily measure the variations

in S1S1, S2S2, S1S2, and S2S1 intervals.

From the theory discussed in Section II and Fig. 1,

we know that a cardiac cycle, S1S1 = S1S2 + S2S1.

We also know that S1S2, i.e. systolic interval variation is

minimal. Therefore, it can be hypothesized that: 3) The S1S1

variation is directly proportional to S2S1 variation with
some constant, provided S1S2 does not vary significantly.
We use this hypothesis to make sure the correct localization

and differentiation of S1 and S2 and to minimize the risk

of erroneous peak detection. We provide a kind of check-

and-correct mechanism by calculating the S1S1, S2S1 and

S1S2 variations and verifying their relationships according

to hypothesis 3). The S1S1 interval is analogous to RR
interval which signifies the beat-to-beat variations. However,

the S1S2 interval variation shows, intra-beat variations. The

ACS-based HRV detection is illustrated through an example

in Section IV-D.

G. Post processing

Once the magnitude spectrogram is approximated into

original sources, the corresponding phases can also be

approximated using the original spectrogram. We generate

a time-frequency mask for each source and apply the cor-

responding mask to the original spectrogram, to recover the

original sources. We construct a time-frequency mask as

Mi =

{
1 ∀X(i) > X(j), j ∈ {m, c}, j �= i
0, otherwise.

(11)

The idea of time-frequency masking is based on the assump-

tion that cardiac sound signals are sparse [23], which means

that over a small time-frequency region only one source in

the mixture dominates. The time-frequency mask (11) is

applied to the spectrogram of the mixture (1), to recover

the time-frequency representation of original sources as

Yi[t, f ] = Mi �X[t, f ]. (12)

The inverse short-time Fourier transform (ISTFT) is used

to convert the time-frequency representation back into the

time-domain.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

In our experiments, for STFT representation, a Hamming
window of length 128 samples (equivalent to 32ms), with

50% overlap was used. The parameters γc = 1, α = 1, β =
1 and K = 2 were used in the experiments. The smoothing

window Ls = 80ms and a peak threshold γ = 0.3 were

used. The maximum number of iterations used for NMPCF

and NMF was 100 and 130, respectively. MATLAB was

used for simulations.

B. Clinical Data

The data samples taken from [24] were obtained from

different subjects, in noisy clinical settings, using a digital

stethoscope, with a data sampling frequency of 4 kHz. In the

database [24], we select the samples, where each sample is

generally a real mixture of normal cardiac sounds, murmurs,

possibly little interference from the lung sounds and white

Gaussian noise.

C. Decomposition comparisons

We compare our analysis and decomposition method with

the three widely used state-of-the-art decomposition tools:

1) Wavelet decomposition (WD); 2) singular spectrum anal-

ysis (SSA), and empirical embedded mode decomposition

(EEMD). To provided a fair comparison, we use the same

data sample with all the mentioned tools. To the best of our

understandings, we tried to achieve the best possible results

using similar settings, i.e. decomposition levels, etc., with all
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(a) Signal decomposition using Wavelet decomposition.
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(b) Signal decomposition using SSA.
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(c) Signal decomposition using EEMD.
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(d) Signal decomposition using proposed technique.

Figure 3: Comparison of the proposed decomposition method with the state-of-the-art decomposition tools.

the mentioned tools. In the WD, we use “db” as a mother

wavelet, with 3 levels of decompositions. The reconstructed

3 approximations and 3 details components which we denote

as wavedc1-wavedc6, are illustrated in Fig. 3a. In the SSA,

we use a window length of 50 samples. The reconstructed,

first 6 principal components denoted as ssac1-ssac6, are given

in Fig. 3b. The resulting 6 components based on EEMD

which we denote as, eemdc1-eemdc6, are illustrated in Fig.

3c. The reconstructed components using the proposed NMF-

based decomposition method are given in Fig. 3d. As shown

in Fig. 3, our proposed method and SSA both show better

performance as compared to other methods, by extracting

meaningful features. The most important extracted features

i.e., normal cardiac sounds, represented as comp11 and

murmurs, represented as comp22, using the proposed method

are compared against SSA, through more elaborative graphs

in Fig. 4. The excellent separation of different components

(using the proposed method) and their close match with

the original signals, show the potential significance of the

proposed method.

D. ACS-based HRV example

ACS-based HRV detection technique was applied to the

clinical samples discussed in Section IV-B. A sample length

of 25s was used. The samples with shorter lengths were

looped to meet the length requirement. Above 90% speci-

ficity and sensitivity was achieved. An example of ACS-

based HRV detection is given in Fig. 5. Fig. 5b(1)&(2) plot

the coefficient weights (Hc) of the normal cardiac sounds,

where the peaks indicate the locations of S1 and S2. The

S1 localization through peak conditioning is plotted in Fig.

5b(2). The S1S1, S2S1 and S1S2 variations are plotted in

Fig. 5b(3). It is worth mentioning that the various interval

variations are consistent with the underlying theory.

V. DISCUSSIONS

NMF based decomposition of cardiac sounds provides

excellent recovery of the normal cardiac sounds and

murmurs, illustrated through various examples, see, e.g.

Fig. 4. NMF based decomposition of cardiac sounds can

add further prospectives to their analysis. For instance

the coefficient matrix (Hc) which captures the timing

information can be useful in the ACS-based HRV detection.

The ACS-based HRV detection not only provides beat-to-

beat variation but also variation within a beat which is hard

to achieve with the ECG signals.

ACS-based HRV detection method is directly dependent
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(a) The most important features, i.e. normal cardiac sounds
(comp11) and murmurs (comp22) extracted from the mixed
signal using proposed method are compared against the similar
components ssac1 and ssac5 achieved though SSA.
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Figure 4: Comparison of some of the important features

(components) derived using SSA and proposed method.

on the localizations and differentiations of S1 and S2, which

can be more robust using the recovered normal cardiac

sounds shown in Fig. 5a(2)&(3) as compared to the mixture

given in Fig. 5a(1). As argued in Section I, the highly

nonstationary nature of the cardiac sounds which makes the

localization and differentiation of S1 and S2 challenging, is

one of the main reasons that limits the application of most

of the existing automatic segmentation methods in the real

scenarios. Therefore, to minimize the adverse effects in

such scenarios, our proposed check-and-correct mechanism

discussed in Section III-F, can be useful to verify and

correct HRV detection by manually tweaking the various

parameters (such as, e.g., smoothing window), if needed.

For instance in Fig. 5b(3) the almost flat graph of S1S2

intervals and the variation of S1S1 which is almost directly

proportional to the variation in S2S1, can verify the correct

HRV detection.

Similar to the existing decomposition techniques which

require the manual settings for various parameters, such as

decomposition level, our method also needs these settings,
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Figure 5: ACS-based HRV detection example.

which can be selected heuristically by analyzing large data.

Nevertheless, the ultimate goal of this study is the devel-

opment of a computer-aided auscultation method, allowing

a physician to analyze and interpret the cardiac sounds

visually. Hence the manual tweaking of different parameters

can be useful for better results.

VI. CONCLUSIONS

In this paper we investigated the potential application of

NMF in the recovery and analysis of cardiac sounds. A

novel method for the separation of normal cardiac sounds

and murmurs based on NMF is proposed. The simultaneous

time-domain as well as frequency-domain features extrac-

tion via NMF can explore further analysis of the cardiac

sounds. The novel HRV detection based on various cardiac

sound components can incorporate additional aspects to

the classical cardiac auscultation examination. The potential

significance of the ACS-based HRV detection method can be

twofold: 1) it can complement the existing short-time ECG

signal-based HRV methods to improve HRV performance
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in actual clinical settings, and 2) the solo ACS-based HRV

detection method can eliminate expensive ECG setup in cer-

tain cost/time critical applications. The NMF-based cardiac

sound analysis and feature extraction method is compared

against the state-of-the-art analysis tools; experiments are

performed on actual clinical data, which show significantly

better performance. Our proposed method is particularly

useful in scenarios where highly skilled professionals are not

available, such as rural areas in underdeveloped countries.
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