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Abstract—Research on biological objects requires tracking
hundreds of micro-objects from the microscopy video. We pro-
pose an automated tracking framework to extract trajectories
of micro-objects. This framework uses a particle probability
hypothesis density (PF-PHD) tracker to implement a recursive
Bayesian state estimation and trajectories association. In the
framework, an ellipse target model is presented to describe the
micro-objects with shape parameters instead of point-like targets.
Furthermore, an orientation and positional constraint model is
developed to deal with the data association of crossing trajectories
in multitarget tracking. Using this framework, a significantly
larger number of tracks are obtained than manual tracking.
The experiments on simulated image sequences of microtubule
movement are performed in order to evaluate the proposed PF-
PHD tracking method.

I. INTRODUCTION

At present, a considerable part of research on biological dy-

namics is shifting towards detecting and tracking micro-objects

(cells, bacteria, infecting viruses, etc) of microscopy images,

allowing the visualization of specific biological processes in

real time and in two dimensions or three dimensions[1], [2],

[3]. With these exciting developments [4], [5], [6], biologists

are now able to obtain a real time view of activities in

micro-objects, like filming cells and documenting the infec-

tious disease processes in living systems. Despite significant

technical advances in tracking moving objects, micro-object

tracking remains a challenging task due to the complex

nature of biological applications. Microscopic sequences are

usually populated with visually similar tiny structures that

have intricate motion patterns and sophisticated interactions

with other structures such as birth and merging. Moreover,

the micro-objects may enter, exit, disappear from the field of

view or be occluded by other cellular objects. In addition some

microscopy images have sequences that are contaminated with

high levels of noise which complicates detection. Therefore, it

is important to track of multiple micro-objects in an automatic,

reproducible, and unprejudiced manner.

For decades, there have been many ways and methods

for micro-objects tracking. For a general summary of object

tracking methods we refer to [7], [8], [9]. The simplest way

besides manual segmentation is thresholding. Thresholding

might be applicable when the objects have sufficiently and

consistently different intensities compared to their background.

However, it will fail in the case of severe noise, poor contrast.

There is a kind of method that performs cell tracking using

the energy function [10]. The level set method is an example

that can be used to tackle object topology changes and generate

a segmentation of the object [11], [12]. Unfortunately, the

close proximity of cells and the occlusion in the microscopy

videos make cell tracking difficult. Active contour approaches

an energy depending on the segmentation curve, where a low

energy corresponds to a curve with the desired properties

[1], [13]. Typically, these methods are driven by the data in

some feature space and make a regularity assumption on the

smoothness of the curve.

The target tracking approaches based on nearest neighbor

and smooth-motion criteria [14], [15] are applicable to image

data showing limited numbers of clearly distinguishable spots

against relatively backgrounds, but fail to yield reliable results

in the case of poor imaging conditions. Methods based on

minimal cost path searching [16], [17], [18] have also been

proposed. However, these have been demonstrated to work

well only for a single object or a very limited number of

well-separated objects.

Another common approach to dealing with microscopic

target tracking is by using a multiple hypothesis tracking

(MHT) [19] and joint probabilistic data association (JPDA)

filter [20]. Motion filters with prior knowledge in the time

domain, such as Kalman filter (KF) [21] and particle filter

(PF) [20], are applied to seek an approximate globally optimal

solution in space, similar to JPDA but capable of adaptively

dealing with the birth and death of particle trajectories in

biological application. The critical factors in these approaches

are reliable motion models and corresponding data association

for the motion parameter update.

In recent years, Mahler devised the probability hypothesis

density (PHD) filter as a first order statistic of the multitarget

filter [22]. Due to its good performance and significantly low

processing time, the filter has been recently used in various

applications [23], [24]. In biological applications, Gaussian-

Mixture PHD filter was developed on microscopic visual data

to extract trajectories of free-swimming bacteria in order to

analyze their motion [6]. Further, the point-like target model

usually ignores many important geometric shape features for

most biological micro-objects with various shapes. Therefore,

these approaches can hardly be extended to the complicated

real biological scenarios.

Over time in the microscopy image sequences, some of

micro-objects may disappear; new micro-objects may appear;
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and the surviving micro-objects may evolve to new states

based on their dynamics. Moreover, due to microscopy lim-

itations, only some objects are detected at each frame and

many measurements are spurious detections (clutter). PHD

filter can effectively deal with such biological cases. In this

paper, we propose a framework for the automatic detection

and tracking of biological micro-objects in microscopy im-

ages by considering geometric shape features and dynamic.

We use mathematical morphology (MM) to enhance image

quality and extract the shape parameters as the measurement

information in the next tracker. Then, we use a particle filter

PHD (PF-PHD) tracker to allow an implementation for target

initialization, state estimation, and track continuity.

The contributions of this paper include the following.

1) We propose a complete Bayesian filter framework using

particle-PHD filter for the automatic detection and track-

ing of biological micro-objects in microscopy images.

2) A target shape model is presented to describe the micro-

objects of interest not only with their centroid but

also with structure parameters. The model can enable

the calculation of area and shape of the micro-objects

instead of point-like targets.

3) An orientational and positional constraint model is pro-

posed in the track continuity to handle the issue of

crossing trajectories.

The remainder of the paper is organized as follows. In

Section II, we give the background information of the PHD

filter. The PF-PHD tracking framework is provided in Section

III. The experimental results of applying PF-PHD tracker to

microscopy images sequences are presented in Section IV.

Section V concludes.

II. BACKGROUND OF PHD FILTER

Mahler proposed random finite sets (RFS) as a theoretical

framework for multitarget data fusion [25]. In random set

theory, let x1, . . . , xNt and y1, . . . , yMt
be the states of all

Nt targets and all Mt measurements at time t, respectively.
We can describe each time by two RFSs: Xt = {x1, . . . , xNt

}
for states and Yt = {y1, . . . , yMt

} for measurements.
In the RFS based Bayesian tracking approach, the goal

is to estimate the joint multitarget posterior density of the

states at each time step t using the set of all measurements
up to this time step. This posterior density pt(Xt|Y1:t), can
be described by a discrete probability distribution and a joint

probability density on the targets’ cardinality and state [26],

respectively. The general theoretically optimal approach to

multitarget tracking is the recursive Bayesian filter (1) as

follows:

pt|t−1(Xt|Y1:t−1) =

∫
ft|t−1(Xt|X)pt−1(X|Y1:t−1)μs(dX)

pt(Xt|Y1:t) =
gt(Yt|Xt)pt|t−1(Xt|Y1:t−1)∫

gt(Yt|X)pt|t−1(X|Y1:t−1)μs(dX)
(1)

where μs is some reference measure on the space of finite
subsets of X [26]. The Bayesian filtering framework is used

to recursively estimate this combinational posterior density

using multitarget transition density ft|t−1(Xt|Xt−1) and mea-
surement likelihood gt(Yt|Xt). Although the filter provides
an elegant Bayesian formulation of the multitarget filtering

problem, it is computationally intractable. To overcome this

problem, Mahler [25] proposed to propagate the probability

hypothesis density (PHD), or posterior intensity Dt|t(x) which
is the first statistical moment of the probability density func-

tion pt(Xt|Y1:t). The integral of the PHD over a region in
a state space is the expected number of targets within this

region. Consequently, the peaks of PHD are the states with the

highest local concentration and that can be used to generate

the estimates for states of targets. It has been shown that this

posterior intensity PHD can be calculated using the following

recursive equations. The PHD prediction equation is

Dt|t−1(x) = bt(x) +

∫
pS(ζ)ft|t−1(x|ζ)Dt−1|t−1(ζ)dζ (2)

where bt(·) denotes the intensity function of the random finite
set of spontaneous birth targets, and pS(ζ) is the survival
probability that the target will exist given that it has a previous

state ζ. The spawned targets are not considered here. The PHD
update equation is

Dt|t(x) =(1− pD(x))Dt|t−1(x)

+
∑
y∈Yt

PD(x)gt(y|x)Dt|t−1(x)

κt(y) +
∫

PD(ζ)gt(y|ζ)Dt|t−1(ζ)dζ
(3)

where PD(·) is the probability of detection and κt(·) denotes
the intensity function of clutter at time t.

III. THE FRAMEWORK FOR PF-PHD TRACKER

Our framework of biological micro-objects tracking typ-

ically consists of two stages (Fig. 1): microscopy image

processing and micro-objects tracking based on the PF-PHD

tracker. In the first stage, micro-objects of interest are detected

separately in each image frame and their positions and shape

parameters are extracted based on Mathematical morphology

(MM). MM is proved to be a powerful tool for image analysis

[27]. In our previous investigation, we mainly use MM to

extract the shape parameters of micro-objects as measurement

data in the latter tracking algorithm.

In the second stage we use the PF-PHD tracker to construct

the trajectories of all detected micro-objects in the above stage.

Since the PF-PHD tracker recursion accommodates complex-

ities (such as the birth and death models) and embodies all

available statistical information, it can be termed a complete

solution to the estimation and tracking problem. In the PF-

PHD tracker, PHD distribution evolves in the time and space

domain, which is approximated by particles with weights.

Then target states are estimated from the PHD distribution at

each frame. According to the motion of micro-objects between

frames, continuous trajectories are constructed according to

the track continuity algorithm. For PF-PHD application, we

present the ellipse target model to describe the shape infor-

mation. Then a state evolution model is constructed to make

better use of prior knowledge about the dynamics of micro-

objects being tracked. In the tracking continuity stage, to deal
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Fig. 1. Framework of the proposed tracking biological micro-objects method.

with the problems of the crossing trajectories, we model the

orientational and positional constraints.

In the next, we give several models, including a state space

model, PF-PHD trcker as well as the orientation and position

constraints model to allow simultaneous tracking of multiple

micro-objects crossing each other within this framework.

A. State Space Model

1) Target model: In many applications of biological micro-
object tracking, the target is assumed to be visualised as a point

superimposed on the background while the shape and structure

are lost for a point target. In [6], Wood et al. used a GM-

PHD filter to extract trajectories of free-swimming bacteria

and they considered the bacteria as point-like targets without

shape structure. This simplification reduced the complexity of

tracking, but inevitably brought decline to tracking accuracy

due to the lost information. Moreover, the study of dynamic

properties requires the computation of parameters like shape,

size, spatial distribution and orientation of the micro-objects.

Therefore, point tracking can be made particularly inadequate

in the context of microscopic video with shape. According to

the shape and size of micro-objects in our biological scenarios,

we consider the micro-object as an elliptic shape target instead

of a point-like. Firstly, a definition of ellipse is given:

Definition 3.1: Ellipse. A two-dimensional ellipse with
center ct and positive-definite shape matrix At is given by the
set {z|z ∈ R2and(z − ct)

TA−1
t (z − ct) ≤ 1} where

At =

[
cos θ − sin θ
sin θ cos θ

]T [
at 0
0 bt

] [
cos θ − sin θ
sin θ cos θ

]
(4)

and θ ∈ [−π/2, π/2) is the rotation angle between the X-axis

and the major axis.

[
cos θ − sin θ
sin θ cos θ

]
is the rotation matrix.

at, bt are the length of the major and minor axes, respectively.
We represent the objects as ellipse with the state vector

xt = (xt, ẋt, yt, ẏt, at, bt, θt). Specifically, (xt, ẋt, yt, ẏt) =
vt, where (xt, yt) = rt is the center position of the ellipse
target and (ẋt, ẏt) = ṙt is velocity. (at, bt, θt) = st is the
object shape feature vector. Elliptical shapes are highly rele-

vant for real biological applications since many mirco-objects,

like some red blood cells, Escherichia coli, certain vesicles in

the cytoplasm and Tanay virus from mosquitoes [28], can be

considered approximately as an ellipsoid. Furthermore, elliptic

shapes supply orientation information, which is quite useful in

real world applications.

2) State evolution model : The dynamic state model is
expressed in the following form:

xt = Mxt−1 + ξ (5)

where M = diag(F, I3) is the sate transition matrix and
ξ ∼ N (0,diag(Q, Q2)) is the state noise where N (μ,Σ)
indicates the normal distribution with mean μ and covariance
matrix Σ. Here we assume that state transition of vt and
shape feature vector st are independent. Therefore, our state
evolution model Dxt|xt−1 can be factorized as

Dxt|xt−1 = Dv(vt|vt−1)Ds(st|st−1). (6)

Here Dv(vt|vt−1) is modeled using a linear Gaussian model

Dv(vt|vt−1) ∝ e− 1
2 (vt−F vt−1)TQ−1(vt−F vt−1) (7)

with the process transition matrix F and covariance Q. Small
changes in frame-to-frame micro-objects shape (appearance)

are modeled using the Gaussian transition prior

Ds(st|st−1) = N (st|st−1, Q2) (8)

where Q2 represents the covariance matrix of target shape.

B. PF-PHD tracker

In order to implement the recursion (2) and (3), we use

the PF-PHD tracker to interpret the prediction and update

operators. The PF-PHD tracker is described as follows:

Step 1: Initialization. The shape parameters in the first
image can be obtained as the prior knowledge to initialise the

PF-PHD tracker.

Step 2: Prediction. At time t ≥ 2, let {xit, wit} denote
a particle approximation of the PHD. For i = 1, . . . , Lt−1,

sample x̃it ∼ qt(·|xit−1, Yt), which denotes the importance

function of the particle filter. {x̃it}Lt−1+Jt
i=Lt−1+1 be Jt i.i.d samples

from another proposal density πt(·|Yt), i.e.,

x̃it ∼
{

qt(·|xit−1, Yt), i = 1, . . . , Lt−1

πt(·|Yt), i = Lt−1 + 1, . . . , Lt−1 + Jt

and the weights of particles

w̃it|t−1

⎧⎨
⎩
ft|t−1(x̃

i
t,x

i
t−1)

qt(x̃it|xit−1,Yt)
wit−1, i = 1, . . . , Lt−1

bt(x̃
i
t)

Jtπ(x̃it|Yt) , i = Lt−1 + 1, . . . , Lt−1 + Jt

Step 3: Update. For i = 1, . . . , Lt−1 + Jt, update weights

w̃it =
(
1− PD(x̃

i
t) +

∑
yj∈Yt Gi,jt

)
w̃it|t−1 where Gi,jt =

PDLt(yj |x̃it)
κt(yj)+Ct(yj)

and Ct(yj) =
∑Lt−1+Jt
i=1 PDLt(yj |x̃it)w̃it|t−1.

Meanwhile, compute the sub-weight [29] of each particle for

all observations yj ∈ Yt, w̃i,jt = Gi,jt w̃it|t−1.

Step 4: Resampling. Compute the sum of particle weights
N̂t|t =

∑Lt−1+Jt
i=1 w̃it, then the expected number of targets

T̂t = round(N̂t|t). Resampling {x̃it,
w̃i

t

N̂t|t
}Lt−1+Jt
i=1 to get

{xit, wit}Lt
i=1, and the new weight of each particle is

N̂t|t
Lt
.
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Step 5: State estimation. For each observation yjt ,
j = 1, . . . , Mt, compute the sum of sub-weights W j

t =∑Lt−1+Jt
i=1 w̃i,jt relevant to y

j
t . For p = 1 to T̂t, find the largest

W q
t , where q = argj max(W

j
t )
Mt
j=1. Return ςpt = wi,qt · x̃it as

the pth estimated state, where wi,qt =
w̃i,q

t
∑Lt−1+Jt

i=1 w̃i,q
t

and let

W q
t = 0.
Step 6: Track Continuity. The track continuity mainly

composes of three parts.

(1) computing weight matrix:⎡
⎢⎢⎣

w̃l,1,1t w̃l,1,2t . . . w̃l,1,Mt

t

w̃l,2,1t w̃l,2,2t . . . w̃l,2,Mt

t

. . . . . . . . . . . .

w̃
l,Mt−1,1
t w̃

l,Mt−1,2
t . . . w̃

l,Mt−1,Mt

t

⎤
⎥⎥⎦

where w̃l,i,jt =
PD(x̃lt)Lt(yt,j |x̃lt)w̃l,i

t|t−1
κt(yt,j)+Ct(yt,j)

, j = 1, . . . , Mt, i =

1, . . . , Mt−1, l = Lt−1 + 1, . . . , Lt−1 + Jt.
(2)Formulating association weight matrix:

WA(t) =

⎡
⎢⎢⎣

W 1,1
t W 1,2

t . . . W 1,Mt

t

W 2,1
t W 2,2

t . . . W 2,Mt

t

. . . . . . . . . . . .

W
Mt−1,1
t . . . . . . W

Mt−1,Mt

t

⎤
⎥⎥⎦

where W i,j
t =

∑Lt−1+Jt
l=1 w̃l,i,jt .

(3)Associating the target states. Search for the largest el-

ement W p,q
t in WA(t). If W p,q

t satisfies W p,q
t ≥ WAH

(WAH is a given threshold). If there is no less than one

W i,q
t (i = 1, . . . , Mt−1) which also satisfies W i,q

t ≥ WAH ,

use the state equation ς̄it|t−1 = Mςit−1 to predict their target

states, and then select ςp
′
t−1 with the least distance to ςqt by

p′ = argi min
W i,q

t ≥WAH

(ς̄it|t−1 − ςqt )(ς̄
i
t|t−1 − ςqt )

T .

If there is no other W i,q
t satisfying W p,q

t ≥ WAH , set p′ = p.

Put the estimated state pair (ςp
′
t−1, ςqt ) into the association set

to indicate that state ςp
′
t−1 and ςqt are originated from the same

target. Then update WA(t) with W p′,j
t = 0, j = 1, . . . , Mt;

W i,q
t = 0, i = 1, . . . , Mt−1.

C. Track refinement

PHD filter may fail to distinguish the targets in very hard

scenarios such as with many crossing targets [30]. For the

crossing targets, particel labeling track continuity sometimes

leads to identification inaccuracy or loss in the rough tra-

jectories. We propose the orientation and position constraints

model in PF-PHD tracker to tackle the problem of crossing

trajectories. In our microscopy video, the movements of micro-

objects are relatively steady and sudden turns or impropriety

jumps hardly happen. Therefore, based on the assumption that

there are limits of relative changes in position and orientation

in two consecutive frames for one target, we confine the targets

in the image sequences with a maximum length of positional

moving d∗ and a maximum angle of orientation moving θ∗.
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Fig. 2. Illustration of the constraint model

Proposition 3.1: Our orientation and position constraints
model is in the following:

|xt−1,j − xt,i| ≤ d∗
1, |yt−1,j − yt,i| ≤ d∗

2 (9)

and

| arctan ẏt−1,j

ẋt−1,j
− arctan ẏt,i

ẋt,i
| ≤ θ∗. (10)

If (xjt−1, xit) is in the association set and satisfy the above
constraint conditions, xjt−1 and xit are the same target and
association pair (xjt−1, xit) is accepted. In the constraint
model, we confine the maximum motion of the target in a

neighborhood whose central is xt−1 with radius d∗(d∗
1 = d∗

2)
and the maximum moving orientation is θ∗. Fig. 2 shows
the neighborhood of the constraint model. Here, we use

arctan
yt,j−yt−1,i
xt,j−xt−1,i to approximate arctan

ẏt−1
ẋt−1

and d∗
1 = d∗

2 =

d∗ in Fig. 2. From Fig. 2, we find that x1t and x2t do not
satisfy the constraint model due to |yt−1 − yt,1| > d∗

2 and

| arctan ẏt−1ẋt−1
− arctan

ẏt,2
ẋt,2

| > θ∗. The motion from xt−1

to x3t is in the reasonable neighborhood, thus this trajectory
satisfies the constraint model and it can be accepted. Under

the confinements (9) and (10) the position of the micro-objects

is constrained to lie within an appropriate distance, and their

orientation at any given location is constrained to a reasonable

angle against the wrong trajectory. Together, the constraint

functions reduce the uncertainty of the state association.

Remark: Note that this constraint model is valid for the
trajectories without a sudden turn or impropriety jump. If a

trajectory has sharp changes or jump, the constraint model

may bring out a wrong track association. However, there is a

low probability of such events occurring in many biological

applications.

IV. EXPERIMENT RESULTS

The experiment is testing on the simulated microtubule im-

age sequences with a larger number of micro-objects (50−70
per frame). They are from an open competition at 2012 IEEE

International Symposium on Biomedical Imaging [31]. There

are 100 time frames of 512 × 512 pixels in the sequences.
1) Preprocessing of microscopy image sequences: Firstly,

mathematical morphology (MM) is applied to enhance the

original images and obtain the shape parameters. The original

image for the first frame is shown in Fig. 3 (a). We apply
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(a) (b) (c) (d)

Fig. 3. The preprocessed microscopy image based on mathematical morphological. (a) Original image. (b) Image after MM operators. (c) Opening-closing
by morphological reconstruction. (d) Regional maxima of morphological reconstruction.

the basic MM operators to remove the noise in the original

image that are represented as bright and dark values. The

result is given in the Fig. 3 (b). Fig. 3 (c) shows the image

by morphological reconstruction which combines opening-by-

reconstruction operation and closing-by-reconstruction opera-

tion. In order to have better visibility, the regional maxima

operator is applied to the processed image, and Fig. 3 (d)

shows this result. From Fig. 3 (d), apparently, the white

subregions are microtubules of interest.
2) Tracking initialization: In the PF-PHD trackers, the

process transition matrix F in (7) is given F = diag(F1, F1)
and covariance Q = diag(Q1, Q1) given by F1 =[
1 Δt
0 1

]
and Q1 = 60

[
1
3 (Δt)3 1

2 (Δt)2
1
2 (Δt)2 Δt

]
where Δt = 1s.

The tracks are confined to a field of view of size 512×512
pixels. The new targets can appear at any location in the image.

Thus the position of birth model is set to be a uniform density

over the surveillance region [0, 512] × [0, 512], i.e., bt(rt) =
U(rt; [0, 512]×[0, 512]). The velocity and shape of new targets
are modeled with intensitybt(ṙt, st) = N (ṙt, st;mb, Pb).
The initial number of particles is 4000 and the number of

born particles for each new target is 300. In the orientation
and position constraints model, the maximum moving bound

for angle rotation is θ∗ = 60◦ and the maximum length of
position movement is d∗

1 = d∗
2 = d∗ = 20 pixels. The tracking

algorithm is programmed with Matlab code running on a 3.2

GHz Intel E5700 machine with 2G memory.
3) Experiment results: We compute the estimated target

number, target state, and trajectories in order to evaluate the

tracking performance of the proposed framework. The esti-

mated number of targets (microtubule) is given in Fig. 4. The

“true” number of targets is from careful manual identification.

From Fig. 4, we find that the estimated number of targets has

small errors compared with the manual identification except in

the first frame (the first frame is used for initialization without

number and state estimation). The number error primarily

due to missing the observation at the image preprocess stage.

The MM method failed to identify the corresponding micro-

objects with low-contrast. Once the micro-objects are well

detected at the image preprocess stage, the PF-PHD tracker

will effectively track all the detected micro-objects. Fig. 5 (a)

illustrates the state estimation for 4 consecutive frames and

a detailed result is given in Fig. 5 (b) where the red curves
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Fig. 4. The number of targets. The black square line is the number of targets
from manual analysis and the red “◦” line is the estimated number of targets
of our approach.

are the boundary of micro-objects and the green ones are the

estimated ellipses with yellow centers. From Fig. 5 (b), our

method arrives at accurate state estimation with shape. Fig.

6 shows all trajectories in different frames (10, 15, 20, 25).

The line linked to the target represents its trajectory before

the current time step. If a trajectory disappears in the current

frame, it is marked with a light grey line1.

In order to verify the performance of the constraint models

(9) and (10), a comparison of the trackers’ effort was carried

out on a selection of tracks with a careful manual analysis in

Fig. 7. In Fig. 7 (a), the tracker output without the constraints

model does not match up to the by-hand analysis and fails

to track the crossing trajectories. The failure track was an

incident where two targets moving to the same position are

both simultaneously occluded by a third target as they cross.

In Fig. 7 (b), the tracker output with the constraints model

matches up to the manual tracking analysis and gives the three

right crossing trajectories. Similar results in other scenarios

show the effectiveness of the constraints model.

V. CONCLUSIONS

The micro-objects in microscopy video presents a challenge

for automated tracking algorithms. PHD filter is a natural

1The track output for 100 frames is performed with a video in slow motion
at http://sse.hit.edu.cn/wp-content/uploads/stepts100.rar
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(a) The state estimation results for 11-14 frame (b) Some detailed state estima-
tion

Fig. 5. The state estimation results of four consecutive frames where the red points are the boundary of micro-objects and the green ellipses are the estimated
targets with yellow “+”centers.
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(a) Trajectories in 1-10th frame
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(b) Trajectories in 1-15th frame
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(c) Trajectories in 1-20th frame
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(d) Trajectories in 1-25th frame

Fig. 6. The trajectories in different frame intervals.

solution to this problem due to its superior performance in

dealing with the birth, spawn, and death of micro-objects

as well as providing all available statistical information. We

propose a PF-PHD tracking framework, which is an automated

method capable of simultaneously tracking hundreds of micro-

objects in the microscopy video. In the framework, we present

a shape model to describe the elliptical micro-objects with

kinds of orientation, size, and density instead of point-like

targets. We further develop the orientational and positional

constraints model (9) and (10) to deal with data association

of crossing tracking. The results of experiments suggest that

a significantly larger number of tracks are obtained and our

PF-PHD tracker has an accurate state estimation with shape

information. The PF-PHD tracker with constraint model can

effectively tackle the crossing trajectories.

In some extreme biological conditions, MM is not suffi-

cient for image preprocessing. Therefore, a better method of

detecting objects with low-SNR or low-contrast is one of our

future work. Meanwhile, we will continue to investigate the

micro-object tracking method based on the Bayesian filter.
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