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Abstract—Diabetes, hypertension, cerebral arteriosclerosis
and other diseases have become great threats to human health, so
it is urgent to explore their initial symptoms for early prevention
and treatment. As an important part of small and medium-sized
vessels of human body, retinal vessel is the only deep capillary that
can be non-traumatic directly observed and its morphology, such
as vascular diameter, shape and distribution, is deeply influenced
by these diseases. So an effective vascular detection and features
measurement will help make more accurate diagnosis of these
diseases.

This paper proposes a local adaptive segmentation to detect
more accurate retinal vascular network from abnormal retinal
images which contain red and bright lesions. The retinal im-
age is firstly segmented by weighted entropy with probability
segmentation to detect preliminary vascular network. Then a
two-dimensional partial differential matched filter is introduced
into segmentation to differentiate lesions from vascular network
based on a vascular property. The algorithm has been tested and
compared with other vascular network segmentation algorithms
on the publicly available STARE database since it contains retinal
images where the vascular structure has been precisely marked
by two experts. The experiments demonstrate that our approach
is capable of detecting the vascular network effectively, offering a
better segmentation results, especially on abnormal cases. Because
of its effectiveness, simplicity and robustness for different image
conditions, it is suitable for automated vascular analysis.

Keywords—Vascular Network, matched filter, weighted entropy,
partial differential.

I. INTRODUCTION

The automatic analysis of retinal vascular network is a very
important issue in many clinical investigations and scientific
research related to vascular features. It can aid for diagnosis
and treatment of diabetic retinopathy and hypertension glau-
coma, obesity, arteriosclerosis and retinal artery occlusion, etc.
Information about vascular network in retinal images can be
used in grading disease severity or as part of the process of
automated diagnosis of these diseases. Changes in retinal mor-
phology can reflect the occurrence and development process of
diseases to some extent. We can use digital fundus photography
and image analysis of retinal vascular morphology to find
the relationship between changes in vascular morphology and
development of diabetes. A segmentation of the vascular tree
seems to be the most appropriate representation for the image
registration applications due to three following reasons: 1) it
maps the whole retina; 2) it does not move except in few

diseases; 3) it contains enough information for the localization
of some anchor points [1].

Many vascular network detection methods have been re-
ported in the literature. Most of these work can be roughly
categorized into four main groups: window-based approach,
classifier-based approach, tracking-based approach and active
contour model. 1) Window-based approach: Chaudhuri [2]
proposed matched filter to detect vascular network, which is
based on the vascular gray-level characteristics. To better make
use of the vascular features, Lin [3] used extended Kalman
filter which takes into account continuities in curvature, width,
and intensity changes at the bifurcation or crossover point
to group vascular segments. Moreover, the method in [4]
used oriented filters to calculate the filter response at various
orientations by an efficient architecture to synthesize. These
window-based methods decide whether a pixel belongs to
vascular object mainly based on local characteristics of the
pixel, regardless of global characteristics. 2) Classifier-based
approach: Zana and Klein [5] presented a method based on
mathematical morphology and linear processing for vascular
recognition. To better preserve the spatial structures in the
binarized/thresholded image, Chanwimaluang [1] proposed a
local entropy thresholding scheme. However, the method easily
classifies non-vascular pixels into vascular network despite
in normal retinal images. To address the problem, Lau [6]
modeled the segmented vascular structure as a vascular seg-
ment graph to find the optimal forest in the graph using an
objective function. But it did not handle with non-vascular
pixels in abnormal retinal images, such as the lesions. 3)
Tracking-based approach: In [7], Wu and Stanchev proposed
a method in which the ridges are detected by checking zero-
crossing of the gradients and the curvature, and the tracking
starts from the seed with the highest intensity. Also based on
image ridges, Staal [8] introduced a system in which the image
is partitioned into patches with line elements and tracking is
done by assigning each image pixel to the closest line element.
Different from the methods without manual intervention, Tra-
montan [9] proposed a system including an interactive editing
interface to correct errors and set the required parameters of
analysis after automatic vascular tracking. The tracking-based
methods also only utilize the local related information for
local search and depend on the choice of initial manually
given starting point. 4) Active contour model: Shang [10]
introduced a region competition-based active contour model
exploiting the Gaussian mixture model to segment thick vessels
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and Sun [11] proposed an active contour model using local
morphology fitting with linear structuring element of adaptive
scale and orientation for automatic vascular segmentation. The
active contour model is among the most successful image
segmentation technique in clinical applications, but it also
needs the initial location manually and it is time-consuming
for iteration.

Sumathy [12] proposed an entropy thresholding for vascu-
lar segmentation. But it did not make use of local information
of the image and the lesions in abnormal images can not be
differentiated from the vascular network by the method. In this
paper, we use a weighted entropy with probability segmen-
tation which takes into consideration the vascular influence
on segmentation and current segmentation situation. Based on
the vascular property that gray-level profile of the vascular
cross section can be approximated by a Gaussian-shaped curve
[2], Luo [13] proposed a two-dimensional amplitude-modified
second-order differential matched filter for retinal vascular
network detection. In our segmentation, a two-dimensional
first-order partial differential matched filter is introduced to
differentiate lesions from vascular network in abnormal im-
ages, which is proved to have better performance than second-
order differential in our paper. Also it can automatically
detect vascular network without any initial information and
requires much less computational time because of its lower
complexity compared with tracking-based and active contour
model methods. In the process of proposed method, the ho-
momorphic filter and two-dimensional matched filter are firstly
applied to enhance the original image. Then a local adaptive
segmentation using an weighted entropy with probability and
two-dimensional partial differential matched filter is introduced
to optimize the threshold value. Thus, each pixel in the image
will be identified whether belonged to vascular network or not
according to its local adaptive threshold value.

The remainder of this paper is organized as follows. Section
II introduces the second-order entropy of an image. Section III
then represents the main framework of proposed algorithm.
Experimental evaluation results are illustrated in section IV.
The last section concludes the works in this paper.

II. SECOND-ORDER ENTROPY OF AN IMAGE

As the image pixel intensities are not independent of each
other, we use the entropy of an image based on the gray-level
co-occurrence matrix (GLCM) for the following segmentation.
The GLCM can reflect the integrated information about direc-
tion, adjacent spacing and amplitude of variation. GLCM was
defined by Haralick et al. in 1973 [15]. It shows how often
a pixel value known as the reference pixel with the intensity
value i occurs in a specific relationship to a pixel value known
as the neighbour pixel with the intensity value j. So, each
element (i,j) of the matrix is the number of occurrences of the
pair of pixel with value i and a pixel with value j which are
at a distance d relative to each other.

Suppose f(x,y) is an image gray-level function of size M×
N , for a displacement vector d(= (dx, dy)), the gray-level co-
occurrence matrix D can be defined as

DL×L(i, j) =
M∑
x=1

N∑
y=1

δ (1)

where

{
δ = 1 if f(x, y) = i and f(x+ dx, y + dy) = j
δ = 0 if otherwise

i, j = 0, 1, · · · , L− 1.

and L is the gray levels, which is 256 in this paper and we
define d = [0 1] for horizontal direction and d = [−1 0] for
vertical direction. The probability of co-occurrence p(i, j) of
gray levels i and j can therefore be written as

p(i, j) =
D(i, j)∑

i

∑
j

D(i, j)
(2)

where
L−1∑
i=0

L−1∑
j=0

p(i, j) = 1 and 0 ≤ p(i, j) ≤ 1

i, j = 0, 1, · · · , L− 1.

Hence we can define the second-order entropy of the
image f(x,y) as

Hf = −1

2

L−1∑
i=0

L−1∑
j=0

(p (i, j) /P ) ln (p (i, j) /P ) (3)

where P =
L−1∑
i=0

L−1∑
j=0

p (i, j), i, j = 0, 1, · · · , L− 1

III. A LOCAL ADAPTIVE SEGMENTATION OF VASCULAR

NETWORK FROM ABNORMAL RETINAL IMAGES

The overall framework of the proposed local adaptive
segmentation (LAS) of vascular network from abnormal retinal
images is illustrated in Fig. 1. The system takes as input
the retinal gray-level image and returns the vascular network.
From the input retinal image, the field of view (FOV) will
be detected and then the image is pre-processed for follow-
ing segmentation, including homomorphic filtering and two-
dimensional matched filtering. Then an weighed entropy with
probability segmentation is proposed to obtain preliminary
vascular network, which contain lesions in abnormal retinal
images. To address the problem, a local adaptive segmentation
using two-dimensional partial differential matched filter is
introduced to differentiate lesions from vascular network. An
example of processing result is showed in Fig. 4.
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Fig. 1. Main steps of the proposed local adaptive segmentation (LAS) of
vascular network from abnormal retinal images.

A. FOV Detection

We can analyse the histogram of gray-level image to get
the field of view (FOV). We firstly obtain all minimums on
the histogram and make the minimum, when the area ratio
of FOV is the nearest to a fixed ratio, as threshold value to
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segment gray-level image. Fig. 4 (A4) illustrates the result of
FOV detection and the fixed area ratio of FOV is set as 0.73.

B. Image Pre-processing

1) Homomorphic Filtering: As the retina image has a great
dynamic range of gray-level and the vascular brightness in
retinal image are very dark, it is difficult to identify vascular
details. It will be not enough just using the general linear
gray-scale transforms to enhance the image. This paper uses
homomorphic filtering which belongs to frequency domain
processing. It can adjust the range of gray-level and eliminate
uneven illumination in order to enhance image details in dark
areas without losing details in bright areas. Fig. 4 (B1) shows
the result of homomorphic filtering from the gray image in
Fig. 4 (A2).

2) Two-dimensional Matched Filtering: To further enhance
local contrast of the image, a two-dimensional matched filter
is applied after homomorphic filtering. In signal processing, a
matched filter is the optimal linear filter for maximizing the
signal to noise ratio (SNR) with the additive white noise in
the image. The idea of the matched filter [2] is introduced into
retinal vascular detection based on the property that vascular
gray-level profile of the cross section in a retinal image can
be approximated by a Gaussian-shaped curve and some other
properties like

• Vessels have small curvatures so that can be ap-
proximated as anti-parallel pairs and piecewise linear
segments.

• Vessels appear darker than background because of
lower reflectance.

• Width of a vessel decreases gradually outward form
the optic disk, which is found to lie within the range
of 2-10 pixels.

Fig. 2 shows several gray-level profiles of cross section in a
retinal image.

Fig. 2. Several vascular gray-level profiles of cross section in retinal image.

Therefore, the two-dimensional matched filter is designed to
enhance the local contrast of vascular network.

Define a neighborhood Q = {|x| ≤ 3σ, |y| ≤ L/2}, σ is
the scale of filter and L is the length of segment where the
vascular direction is assumed to fixed, which is along y-axis

in this paper. The corrsponding two-dimensional matched filter
kernel h is defined as

h(x, y) = − 1√
2πσ

exp(− x2

2σ2
) (4)

If A is the number of points in Q, the mean value of h is
calculated as

m =
∑

h (x, y) /A (5)

Thus the matched filter kernel used in this paper is

k (x, y) = h (x, y)−m (6)

Then the kernel will be rotated for different orientations since
the vascular direction is not sure. Fig. 4 (B2) shows the
response image to two-dimensional matched filter of Gaussian
shape with the parameters (L, s)= (9, 2) from the image
showed in Fig. 4 (B1).

C. Weighted Entropy Segmentation

To obtain the optimal or suboptimal threshold value for
vascular segmentation, entropy is employed in the paper. As
mentioned in section II, the second-order entropy based on
gray-level co-occurrence matrix (GLCM), which is defined as
equation (1), is applied for segmentation. Suppose that s, 0 ≤
s ≤ L − 1, is a threshold value and it will divide the GLCM
into four areas. They respectively correspond to the object,
background, edges and noises. As to a pixel belonging to object
or background, its gray level is similar to that of its neighbours.
On the contrary, gray level of a pixel belonging to edges or
noises is greatly different from that of its neighbours. Suppose
that area A and B represent object or background and area C
and D represent edges or noises. The second-order entropy of
area A is

HA(s) = −1

2

s∑
i=0

s∑
j=0

(p(i, j)/pA) ln(p(i, j)/pA) (7)

And the second-order entropy of area B is

HB(s) = −1

2

L−1∑
i=s+1

L−1∑
j=s+1

(p(i, j)/pB) ln(p(i, j)/pB) (8)

Where

pA =
s∑

i=0

s∑
j=0

p(i, j)

p(i, j)/pA = D(i,j)
s∑

i=0

s∑

j=0
D(i,j)

for 0 ≤ i ≤ s, 0 ≤ j ≤ s

(9)

and

pB =
L−1∑

i=s+1

L−1∑
j=s+1

p(i, j)

p(i, j)/pB = D(i,j)
L−1∑

i=s+1

L−1∑

j=s+1

D(i,j)

for s+ 1 ≤ i ≤ L− 1, s ≤ j ≤ L− 1

(10)

Because the number of pixels of edges and noises is of a very
small proportion, the second-order entropy of area C and D
can be left out. Hf is total second-order entropy of the whole
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image and we want to make the sum of HA(s) and HB(s) is
the nearest to Hf , that means

H(s) = Hf − (HA(s) +HB(s)) (11)

can reach its minimum value. Therefore the gray level s∗
reaching the minimum of H(s) is the optimal global threshold
value for segmentation. Denote the segmentation result by Is.

The minimum entropy thresholding is based on assumption
that the object and background have uniform probability distri-
bution. However, it only uses the image intensity distribution,
without taking into account the spatial relationships between
adjacent pixels, so that the segmentation result is not satis-
factory to some extent. Therefore, we introduce a weighted
entropy

HA (s) = −1

2

s∑
i=0

s∑
j=0

w (i, j) (p (i, j) /pA) ln (p (i, j) /pA)

(12)

HB (s)=−1

2

L−1∑
i=s+1

L−1∑
j=s+1

w (i, j) (p (i, j)/pB) ln (p (i, j)/pB)

(13)
Here, w (i, j) ≥ 0 is the weight coefficient and it is defined
based on the probability corresponding with equation (1),
which can calculated by

TL×L(i, j) =

M∑
x=1

N∑
y=1

δ′ (14)

where

{
δ′ = 1 if f(x, y) = i, f(x+ dx, y + dy) = j

and Is (x, y) = 1
δ′ = 0 if otherwise

w (i, j) =

(
T (i, j)

M (i, j)

)k

, 0 ≤ k ≤ 1 (15)

Then normalize the w (i, j) to [0, 1]. When k = 0, equation
(12) and equation (13) are same with equation (7) and equation
(8). w (i, j) will be larger when P (i, j) is larger and hence it
can increase the vascular influence on the segmentation. Also it
takes into consideration the current segmentation situation. As
to the optimal value of k, it can make the contrast of object
and background reach the maximum. The contrast of object
and background can defined as

Ck = |Go −Gb| / (Go +Gb) (16)

where Go is the average gray value of object and Gb is the
average gray value of background. Fig. 4 (C1) shows the result
of advanced thresholding segmentation from Fig. 4 (B2).

D. Local Adaptive Segmentation

From the Fig. 4 (C1) we can see the lesions are segmented
into vascular network, which is due to that the lesions also
have high response to the two-dimensional matched filter when
image pre-processing. To overcome the issue, a local adaptive
segmentation (LAS) using two-dimensional partial differential
matched filter (TPDMF) is introduced into segmentation in fol-
lowing. The two-dimensional matched filter kernel is defined
as equation (6), and its partial differential for x is defined as

kx (x, y) =
x√
2πσ3

exp

(
− x2

2σ2

)
(17)

Fig. 3. The responses to differential matched filters for different kinds of
signals. (A) Matched filter of Gaussian shape. (B) First-order differential of
(A). (C) Second-order differential of (A). (D) Different kinds of signals. (E)
The signal responses to (B). (F) The signal responses to (C).

Fig. 3 shows the responses to first-order and second-
order differential matched filters for different kinds of signals,
which are showed in (D), including Gaussian-shaped signal,
linear signal, step signal and sinusoidal signal. The Gaussian-
shaped signal is used to simulate the vascular profile, while
the liner, step and sinusoidal signals are used to simulate the
lesions which may appear in various change because of their
irregular shapes. (B) and (C) are the first-order and second-
order differential of (A). (E) and (F) are the signal responses
to (B) and (C) respectively. In (E), the response of Gaussian-
shaped signal is equal to zero at the center position (x = 50),
which is simulated as the center of vascular profile, and close
to zero around the center. Only the position around center is
considered here because the neighbourhood Q of matched filter
defined as equation (6) is not wide. In contrast, the absolute
value of responses for other signals around the center are high.
Thus, it is easy to differentiate them by first-order differential
matched filter. In (F), the responses of linear, step and sinu-
soidal signals are positive on one side of center and negative
on another side. And their absolute values are similar to the
absolute value of Gaussian-shaped signal response. Thus, it
is difficult to differentiate them by second-order differential
matched filter. Therefore, a two-dimensional first-order partial
differential matched filter is applied in our segmentation to
differentiate the lesions from vascular network.

Denote the response image to two-dimensional partial
differential matched filter from homomorphic filtering image
by fp (x, y). Therefore, the local adaptive threshold value for
segmentation can be defined as

tl
∗ (i, j) = s∗ + λ · |fp (i, j)| , i, j = 0, 1, · · · , L− 1 (18)

As to a pixel (i, j) belonging to vascular network in the image,
its response absolute value |fp (i, j)| is very small and thus its
corresponding local adaptive threshold value tl

∗ (i, j) will be
low. On the contrary, the local adaptive threshold value of a
pixels belonging to lesions is high and consequently it is harder
to be segmented into vascular network.

The response image of Fig. 4 (B1) is showed in Fig. 4 (B3).
Fig. 4 (C2) shows the result after using the partial differential
matched filter. Moreover, the difference between Fig. 4 (C1)
and (C2) can be regarded as lesions, which is showed as
Fig. 4 (C3). In practice we discover that segmentation for
the image after processing partial different matched filter can
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obtain more thin vessels. Therefore, we will combine it with
the segmentation in Fig. 4 (C2) to obtain the resultant vascular
network showed in Fig. 4 (C4).

IV. EXPERIMENTAL RESULTS

A. Material

Our method is evaluated on the publicly available database,
STARE [17]. The database consists of twenty images, ten of
which are normal and the other then abnormal. The images
were captured in digital form by a TopCon TRV-50 fundus
camera at 35o field of view. Each image to be analysed is
700×600 pixels in size and 24 bits for per pixel. And manual
vascular network segmentation by two experts are also avail-
able for measurement and comparison. In our experiments,
manual segmentation from the first human expert will regarded
as the gold-standard image (GSI).

B. Metrics

In order to quantify the algorithmic performance of the our
method on a retinal image, the resulting segmentation is com-
pared to its corresponding gold-standard image (GSI) which is
examined by the first human expert. Thus, automated vascular
segmentation performance can be assessed and compared with
other methods. In this paper, we select TPR (true positive rate),
FPR (false positive rate), ACC (accuracy) and QF (quality
factor) as our performance measures, which are widely used
in the literature. According to table I, they are defined as

TPR =
TP

TP + FN
(19)

ACC =
TP + TN

TP + FN + FP + TN
(20)

QF =
TP

TP + FN
− FP

FP + TN
(21)

TABLE I. CONTINGENCY VASCULAR CLASSIFICATION.

Vessels present in GSI Vessels absent in GSI

Vessels detected True Positive (TP) False Positive (FP)
Vessels not detected False Negative (FN) True Negative (TN)

C. Vascular Network Detection Result

We test our method on each original retinal image in
STARE database by the steps described in Secton III with
matlab R2013b. An example of an original and abnormal RGB
retinal image ”im0001” taken from STARE database is showed
in Fig. 4. (A1) is the original RGB image and (A2) is the
gray-level image of (A1), which is taken as the input of our
method. (A3) is the histogram of (A2) and the detected FOV
is showed in (A4). (B1) is the homomorphic filtering image
and its matched filter response image, TPDMF response image
are showed in (B2) and (B3) respectively. (B4) is the manual
vascular segmentation which is regarded as GSI. (C1) is the
segmentation of (B2) and its result using TPDMF is showed in
(C2) and the lesions is in (C3). The resultant vascular network
detected are showed in (C4).

As we can not obtain detailed results from some of methods
introduced in Introduction, these method will not be taken into
comparison. Fig. 5 showed the vascular network segmentation

Fig. 4. Overview of main steps of proposed method on an original and
abnormal RGB retinal image ”im0001” taken from STARE database.

results compared with other methods on abnormal retinal im-
ages. The first column is the original RGB retinal images taken
from STARE which are abnormal and the second column is
the gold-standard images. The third one is result of Sumathy’s
method [12] and next one is result of Hoover’s method [17].
Our detection are showed in the last column. By comparison,
we can see that our method can differentiate lesions from
vascular network more accurately and obtain more vascular
details as well.

D. Weighted Entropy Thresholding Segmentation Analysis

Fig. 6 aims to demonstrate the performance of the seg-
mentation by our proposed weighted entropy thresholding
segmentation. We firstly get the two-dimensional matched
filter output image denoted by fTMF with the parameters for
(L, σ) = (9, 2) as originally proposed in [2]. And then we
will obtain several binary images by thresholding fTMF via
different threshold value from 0 to 255 in a step of 4. The TPR
and ACC will be calculated for each image and we can obtain
QF to judge the quality of image. Then we will undertake the
proposed weighted entropy segmentation (without using two-
dimensional partial differential matched filter) on fTMF and
get a threshold value. The resultant curves are shown in Fig. 6.
From the result we can see that our weighted entropy threshold
value approximates the optimal value when QF reaches its
maximum. Meanwhile the ACC is close to its maximum.
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Fig. 5. Comparison of vascular detection. The first column is the original RGB retinal images and second one is the gold-standard images. The results of
Sumathy’s method [12], Hoover’s method [17] and our method are showed in the last three columns.

Fig. 6. The curves of TPR, FPR, ACC, QF and obtained threshold value by
weighted entropy thresholding segmentation of ”im0001”.

Fig. 7. Comparison results in term of TPR.

Fig. 8. Comparison results in term of QF.

Fig. 9. Comparison results in term of ACC.

81



E. Vascular Detection Result Comparison

Fig. 7, Fig. 8 and Fig. 9 present the comparison results
between our proposed local adaptive segmentation (LAS) and
other state-of-the-art methods on all cases (10 normal images
and 10 abnormal images) and abnormal cases (10 abnormal
images) in STARE database respectively in terms of TPR, QF
and ACC. The result of Mendonca [19] comes from its paper
and those of Chaudhuri [2] and Hoover [17] are obtained by
calculating their resultant images. Some other methods which
can obtain their results only on all cases will not be listed
in the figure. From the figure, we can tell that our method
get better performance in terms of both TPR, QF and ACC
compared with other methods. Specially, it can improve the
performance on abnormal images as well. Since the abnormal
images have lesions that can not be removed completely in
the segmentation, the performance on abnormal cases is worse
than that on all cases. However the increasement on abnormal
cases is larger. In term of TPR on all cases, the increasement is
1.02% compared with the best one of other three methods and
average increasement is 4.77%, which are smaller than those
on only abnormal cases, 2.35% and 8.75% respectively. And
the same conclusion come to QF and ACC. Among the three
metrics, QF obtains the largest increasement, which means
our method can improve the quality of vascular segmentation
efficiently, and ACC obtains the smallest increasement because
the results of other three methods in term of ACC are good
enough.

V. CONCLUSION

This paper proposed a local adaptive segmentation of
vascular network from abnormal retinal images. In the first
stage, the image is pre-processed by a homomorphic filter
and a two-dimensional matched filter, which is based on the
vascular property that vascular gray-level profile of the cross
section can be approximated by a Gaussian-shaped curve. Then
the local adaptive segmentation using weighted entropy and
two-dimensional partial differential matched filter is introduced
to determine the optimal local adaptive threshold value to
segment for each pixel in the image. The proposed algorithm is
compared to several vascular network segmentation algorithms
on STARE and it comes to the conclusion that our method can
reach better performance.
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