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Abstract— Molecular biometrics is an advancing field that 
involves the analysis of a person’s unique biological markers 
at a molecular level to ascertain identity. Bacteria 
communities found on the skin of the human hand have 
shown to be highly diverse and to have a low percentage of 
similarity between individuals. The goal of this research 
effort is to see if a person’s demographics, primarily 
ethnicity, share a relationship with the bacteria communities 
that reside on their hand. A sample collection was carried 
out in which the left and right inner palms of 250 individuals 
were swabbed to obtain a total of 500 bacteria samples. Of 
these, 82 samples covering a range of age, gender, and 
ethnicity of participants were sequenced using 150 paired-
end multiplex reads on an Illumina MiSeq to analyze the 
hypervariable V3 region of the 16S rRNA gene. Sequences 
were analyzed using a combination of commercial and 
custom bioinformatics tools. Results indicate that women 
that participated in the sample collection had a 9% higher 
diversity of bacteria at the genus level than men. Using a 
support vector machine with a 60% train and 40% test 
approach, ethnicities of individuals who provided samples 
could be classified with a range of 64-93% accuracy 
depending on the method used. Principal coordinate plots 
generated by using the unique fraction (UniFrac) algorithm 
devised by Lozupone et al at University of Colorado at 
Boulder showed that similar clustering appeared with people 
of Turkish, Asian Indian, and Middle Eastern descent and 
less clustering with people of Caucasian and African 
American descent. Although  focused on a small subset of the 
human population with no temporal variance in bacterial 
diversity explored, these results provide a basis for 
performing identification based on human bacteria that can 
be expanded upon using time varying sampling and other 
regions of the 16S rRNA gene.  

Keywords— Ethnicity, identification of persons, molecular 
biometrics, next-generation sequencing, skin bacteria 

I. INTRODUCTION 
A biometric trait is a physical or behavioral 

characteristic that is unique to an individual. Unlike 
forensics, which applies to post event situations such as 
criminal events, biometrics deals with pre-event situations 
such as gaining access or verification. Fingerprints, facial, 
iris, and voice recognition are among the most commonly 
used biometric traits today. However, molecular 
biometrics is an emerging subset of biometrics that uses 
unique molecular and biological markers, such as, 
deoxyribonucleic acid (DNA) and odor, to perform human 
identification [1] [2] .  

Body odor is caused by secretions of different skin 
glands and bacterial activity. Many microbial species 
colonize the human skin, and some of these colonies can 
be harmful to the body and cause infection; however, 
other colonies have the opposite effect and enhance the 
body’s immune system [3] [4]. The density of bacterial 
communities on the human skin can be as high as 107 
bacteria cells per square centimeter, and these 
communities can be more diverse than the bacteria that 
reside in the throat, stomach or gut [5]. The palm of the 
hand is thought to contain the most bacterial diversity due 
to its frequent exposure to different surfaces and 
environments. Even with exposure to varying conditions 
such as temperature fluctuations, soaps and detergents, 
lack of constant moisture, and ultraviolet radiation, an 
individual’s hand bacterial communities have been shown 
to be highly resistant to these fluctuations and with 
composition containing some amount of consistency over 
time [6] [7] [8] . 

In a study performed by the Fierer group at the 
University of Colorado at Boulder, is was observed that 
the diversity of skin bacterial communities found on the 
palm surfaces of individuals is quite large, with a total of 
4,742 different phylotypes identified across 102 samples 
[6]. It was shown that women have a much higher level of 
bacterial diversity than that of men and certain bacteria 
groups were more abundant on one gender than the other. 
The similarities between two individuals’ hand bacteria 
showed only a 13% similarity and only a 17% similarity 
between an individual’s left and right hand. This 
uniqueness has enabled hand bacteria to be used as a 
forensic tool to link individuals to their personal 
belongings [9]. Bacteria were swabbed from individuals’ 
fingertips, the individuals’ keyboard keys, and additional 
keyboards from other individuals and random public 
keyboards. Comparisons between these samples showed 
that the bacteria communities on the individual’s 
fingertips and the communities on their keyboard were far 
more similar to each other than the communities found on 
other individuals’ fingertips and random keyboards. Since 
bacteria can reside on surfaces for at least two weeks, it is 
evident that people in the same household would have 
more shared bacteria than individuals outside of the 
household. Although observations have shown there are 
more shared bacteria with members in the same 
household, there is still a sufficient amount of uniqueness 
between the individuals [10].  

The ethnicity of an individual has also been able to be 
determined by specific bacterial communities found in the 
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mouth [11]. Analysis of oral bacterial communities 
collected from 192 individuals who were either non-
Hispanic black, non-Hispanic white, Chinese or Latino 
proved to predict the individuals’ ethnicity with a 62% 
accuracy. Observations showed that the ethnicity of an 
individual was best observed by the bacteria that were 
more influenced by the individual’s heredity rather than 
the bacteria that were associated with the individual’s 
food intake or hygiene. 

Research studies exploring the uniqueness of hand 
bacteria distribution in the human population indicate the 
potential to use these distributions as a means of 
identification. If a subset of colonies can be identified as 
major ‘markers’ for identity, sensor technologies can be 
developed to look for those specific bacteria, similar in 
methodology to how short tandem repeats (STR) are used 
for forensic DNA profiling. Although it is known that 
bacteria collected from the gut have a high affiliation with 
that individual’s genetic makeup [12] [13] , this area is 
not as easily accessible as bacteria collected on the skin. 
The aim of this study was to analyze the third 
hypervariable region (V3) of the 16S ribosomal RNA 
(rRNA) gene from bacteria collected from the palm of a 
hand, which can be used to distinguish a large population 
of bacteria down to the genus level [14], would produce 
similar results in uniqueness, and to determine if a 
person’s demographics, primarily ethnicity, shared a 
relationship with the bacteria communities that exists on 
their hand.    

II. METHODS 
This section discusses how the hand bacteria samples 

were collected, what methods were used to extract and 
amplify the target region of interest, and what 
bioinformatics tools were used to analyze this region.  

A. Sample Set 
250 individuals participated in a sample collection 

held at WVU’s Health Sciences Center over a three month 
period under IRB H-23693. Each participant that arrived 
during their scheduled appointment signed and dated a 
consent form describing in detail of the data collection 
procedure. Information about the individuals’ 
demographics such as age, gender and ethnicity was also 
gathered after the consenting.  

The participant’s hands were swabbed by taking the 
end of a cotton swab that was dipped into a double 
distilled water solution containing 0.15 M NaCl and 0.1% 
Tween 20 [15]. The cotton swab had been sterilized prior 
to collection by being wrapped in aluminum foil and 
autoclaved. A staff member swabbed the entire inside of 
the participant’s hand while rotating the cotton tip. After 
swabbing, the head of the tip was placed inside a 2ml 
bead solution tube from an Ultraclean Plant DNA 
Isolation Kit (MO BIO Laboratories, Carlsbad, CA, 
USA), as has been reported previously [16], and then cut 
with clean scissors. A new cotton swab was then used for 
the other hand. When finished the same procedure was 
followed as with the first sample. The tubes were stored at 
-80° C until the DNA extraction procedure was 
performed. 

 
 

B. Bacteria DNA Isolation and Amplification  
DNA isolation was carried out on 102 samples of the 

sample set. A smaller sample subset was analyzed first to 
see what observations could be made. This subset 
contained a well-balanced variation of ethnicity and 
gender. Isolation was performed by following the 
Ultraclean Plant DNA Isolation Kit Protocol with the 
following modifications:   

1) Prior to adding Solution P1 samples were placed 
in a 65°C water bath for 5 minutes 

2) Step 9, 500 µl of supernatant was transferred to a 
clean 2 ml collection tube 

3) Step 14, 600 µl of supernatant was transferred to 
a clean 2 ml collection tube 

4) Step 23, Milli-Q H2O was used for elution buffer 
instead of solution P5 and was left to sit for 5 minutes 
before centrifuging.   

All other steps were followed as directed in the 
Ultraclean protocol. After isolation, the samples were 
stored at -20°C until amplification was carried out. 

The 16S rRNA gene was amplified using primer set 
E8F and E1541R, primer sequences were located just 
inside the target region [17] (TABLE I).  Primers were 
synthesized by Eurofins Genomics (Huntsville, AL, 
USA). Using a 50 µl polymerase chain reaction (PCR) 
reaction mixture, each mixture consisted of 10 µl of DNA 
template, 10 µl of 5x HF Buffer (includes MgCl2) (New 
England Biolabs, Ipswich, MA, USA), 1 µl of 20 µM of 
each reverse and forward primer, 2.5 µl of dimethyl 
sulfoxide (DMSO), 0.5 µl of Phusion Taq polymerase 
(New England Biolabs, Ipswich, MA, USA) and 0.5 µl 
deoxynucleotide triphosphate (dNTP). Settings for PCR 
using the MJ Mini Personal Thermal Cycler (Bio-Rad 
Laboratories, Hercules, CA, USA) included an initial 
95°C for 5 min, 30 cycles of 95°C for 45 sec, 51.4°C for 1 
min and 72°C for 30 sec and a final extension step of 
72°C for 7 min. PCR products were purified using the 
PCR cleanup protocol from a Gel/PCR DNA Fragment 
Extraction Kit (IBI Scientific, Peosta, IA, USA) [18]. 

C. Library Generation and Sequencing 
After purification, the V3 region was amplified again 

using forward primer 341F and modified reverse primer 
518R which are located just outside the target region [19] 
[20] (synthesized by Eurofins Genomics, see TABLE I). 
The modified reverse primer contained a unique six base 
pair index e.g. CGTGAT, ACATCG, GCCTAA, which 
would allow for identification of each sample during 
multiplexing [20]. The same PCR reaction mix that was 
used prior for the 16S rRNA was used again except for 
the change of primers. Again, using the MJ Mini Personal 
Thermal Cycler, PCR settings were an initial 5 min 
denaturation set at 95°C, 20 cycles of 95°C for 1 min, 
50°C for 1 min, and 72°C for 1 min and then completed 
with an extension step set at 72°C for 7 min. 
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TABLE I.  BACTERIA SPECIFIC 16S RRNA AND V3 REGION 
PCR PRIMER AND SEQUENCE 

Region Code Sequence 5′–3′ 

16S 
rRNA 

E8F AGAGTTTGATCCTGGCTCAG 

E1541R AAGGAGGTGATCCANCCRCA 

V3  

341F 

AATGATACGGCGACCACCGAG 
ATCTACACTCTTTCCCTACACG 
ACGCTCTTCCGATCTCCTACGG 
GAGGCAGCAG 

518Ra 

CAAGCAGAAGACGGCATACGA 
GATNNNNNNGTGACTGGAGTT 
CAGACGTGTGCTCTTCCGATCT 
ATTACCGCGGCTGCTGG 

 Each library consisted of samples could be identified 
by the unique index present in the reverse primer. 
Samples were again purified using the IBI Scientific kit 
and their absorbance was measured at 260nm using a 
NanoDrop 1000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). The DNA concentration 
of each sample was determined using Beer’s Law.  The 
samples were then each diluted to 20ng/µl accordingly. 
5µl of each sample was then pooled and sent to the 
Genomics Core Facility at West Virginia University for a 
150bp paired-end multiplexed sequencing using the 
Illumina Miseq. Samples were loaded at a concentration 
of [8pM] as per guidelines provided by Illumina for the 
MiSeq V2 reagent chemistry. After project runs were 
complete the data was sent to BaseSpace [21], Illumina’s 
next-generation sequencing cloud, for automatic analysis 
and storage. Index reads and base call quality scores for 
each sample were written to two FASTQ format files. One 
file for the forward run and the other for the reverse run. 
Due to some low quality scores with some of the samples, 
only 82 samples from the set were used for further 
evaluation.   

D. Bioinformatics Method I 
Using the FASTQ files, BaseSpace performed 

classification on the index reads using a Bayesian 
classifier. The classification process involved matching 
short subsequences of the reads (called words) to a set of 
16S reference sequences from Greengenes database. The 
accumulated word matches for each read were used to 
assign reads to a particular taxonomic classification. 
Summary statistics provide the total number of classified 
clusters for each sample at each taxonomic levels: 
kingdom, phylum, class, order, family, and genus. Index 
reads were merged and aligned using Mothur Software 
[22] and sorted using custom Matlab scripts.  

E. Bioinformatics Method II  
The second method was provided by the Genomics 

Core Facility. This pipeline used the ERNE-filter for 
quality filtering, matched index reads using USEARCH 
[23], classified using QIIME [24], and parsed and merged 

                                                           
a Insertion of six bases “NNNNNN” is for a unique index 

indexes using custom scripts. Data was than analyzed 
using Vegan and R package [25]. 

III. RESULTS 
Fig. 1 provides visualization of the classification 

breakdown of a sample sequenced. Sample results 
contained an average of 646,518 bacteria clusters that 
passed filter. Clusters that were able to be classified to 
genus level were used for further analysis. An average of 
394,179 bacteria clusters were identified at genus level 
with an average of 231 identified operational taxonomic 
units (OTU’s) per sample and a total of 777 different 
OTU’s identified across the sample set. Women who 
participated in the collection were shown to have a 9% 
higher diversity of OTU’s than men. A single rooted 
phylogenetic tree in Newick format was created in Mothur 
containing all OTU's at the genus level from each sample 
(including both left and right hand for majority of 
individuals). From the phylogenetic tree, the UniFrac 
algorithm [26] [27] [28] was used to create a pairwise 
dissimilarity matrix. The UniFrac algorithm measures the 
uniqueness between each sample by evaluating the branch 
lengths within the phylogenetic tree. A branch leading to 
an OTU from both samples is marked as shared, whereas 
a branch leading to an OTU that only appears in one 
sample is marked as unshared. If all branches are unique 
between two samples, the distance score for those two 
samples would be a 1.0. If the two given samples were 
identical, they would receive a score of 0.0. 

The UniFrac distance matrix revealed uniqueness 
scores lower than observed scores in previous studies. The 
average uniqueness score for all of the samples was only 
43%, whereas in [6], results showed a 13% to 17% 
similarity. This could be a result of only using the genus 
level and using a small target region. Principal coordinate 
analysis (PCoA) plots were created using the weighted 
UniFrac algorithm, which takes the abundance of each 
OTU into consideration. Fig. 2-4 displays PCoA plots 
with the 82 samples based off of ethnicity. Participants 
who identified themselves as Middle Eastern, Asian 
Indian, and Turkish descent revealed to have closer 
clustering, whereas participants who identified themselves 
as just Asian descent also showed clustering, while 
Caucasians and African Americans did not. Fig. 5 and 
Fig. 6 display plots based off of participants’ age and 
gender. Neither plot shows any apparent clustering but as 
previously mentioned women differ from men by having a 
higher diversity of OTU’s.  

For both bioinformatics methods, the five most 
common OTU’s revealed the highest potential for 
ethnicity classification. A supervised support vector 
machine (SVM) was used for training and cross 
validation. Using a third degree polynomial kernel 
function, 60% of the data set was used for training and the 
remaining 40% for testing. Training was randomly 
sampled for each ethnicity class. 400 iterations were 
competed and the average accuracy rate was reported. 
Table II shows the accuracy rate for each method. Method 
I used Sphingopyxis, Streptococcus, Corynebacterium, 
Straphylococcus, and Propionibacterium for the five 
features and Method II used Kaistobacter, Acinetobacter, 
Corynebacterium, Straphylococcus and 
Propionibacterium. Both methods showed similar results. 
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Figure 4.  No clustering apparent with African American or Caucasian 
ethnicities. Slight clustering with two participants (four samples) 

identified as Hispanic.  

 

 

Figure 5.  No clustering apparent with participants based on their age. 

 

Figure 6.  No clustering apparent with participants based on gender. 

 

TABLE II.  ACCURACY RATE OF SUPPORT VECTOR 
MACHINE CLASSIFICATION METHOD 

Ethnicity  Number of 
 Samples 

Method I 
(%) 

Method II 
(%) 

Caucasian 15 81 77 

Hispanic 4 85 88 
African 
American 18 66 70 

Turkish 4 92 93 

Middle Eastern 14 76 79 

Asian 15 64 67 

Asian Indian 12 76 77 

 

Figure 7.  Percentage of the five most common bacteria found using 
Method I bioinformatics. 
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Figure 8.  Percentage of the five most common bacteria found using 
Method II bioinformatics.   

IV. CONCLUSION AND RECOMMENDATIONS 
New methods for molecular biometrics has become 

more desirable with the advancement in sequencing 
technology. The goal of this research effort was to 
identify bacteria using the V3 region of the 16S rRNA 
gene and to use these bacteria as ‘markers’ for 
identification of an individual.  Findings revealed there 
are differences in bacteria diversity between men and 
women, and that no two samples were the same. Results 
also indicated that there is some clustering between Asian, 
Asian Indian, Middle Eastern, and Turkish ethnicities, 
which shows these ethnicities have a higher similarity 
between one another than to other ethnicities that didn’t 
such as Caucasian and African American. 

Although this study focuses on a small sample set with 
no additional samples or samples taken at different times 
for comparison and validation, these results do provide a 
basis for performing identification based on bacteria 
found on the human hand. Clustering was apparent with 
some of the ethnicities and particular bacteria did show 
more prominent on certain ethnicities than others. With 
more samples left that can be processed, the dataset can be 
enlarged, which may result in improved pattern 
recognition and decision making. Additionally, with the 
remaining samples it is possible to explore and combine 
other regions of the 16S rRNA gene to identify a higher 
level of uniqueness between individuals, thus resulting in 
a more reliable tool for human identification in the future. 
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