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Abstract—Informative gene selection is an important topic in
the field of bioinformatics which has attracted intensive interest in
recent years. It aims to identify the genes which are differentially
expressed in different groups, and thus are informative for
the classification between the groups. For this purpose, many
microarray experiments have been conducted by various medical
institutes on their own sets of patients and test subjects. For
those institutes who have conducted experiments regarding the
same type of disease, it would be beneficial to all of them if they
learn on the union of their data to find the informative genes
instead of learn just on their own datasets, since the amount of
data each institute holds is very limited. However, in many cases,
the institutes are not allowed to share their data with others
because microarray datasets contain private information about
the patients and test subjects.

In this paper, we focus on this problem and propose a privacy
preserving algorithm that allows multiple parties to perform
the widely used informative gene selection method, the Fisher
criterion, on the union of their data, without revealing each
party’s data to others. Basically, we utilize the homomorphic
cryptographic system to protect the data during the calculations.
Experimental results on real world datasets show the effectiveness
of the proposed method.

I. INTRODUCTION

In the research of gene expression data analysis, infor-
mative gene selection has been a critical problem attracting
intensive interest. Informative genes are the genes differentially
expressed in different groups of samples, and are informative
for the differences between those groups. They can be selected
by comparing the gene expression levels between groups,
and are of great value in many applications such as disease
diagnosis. Some popular gene selection methods include Fisher
criterion [1], correlation coefficient, which is also known as
signal-to-noise statistic [2], t-test [3], and others. In this work,
we focus on the Fisher criterion, which is a classical feature
selection method broadly used in many areas because of its
effectiveness.

With the development of the microarray analysis technol-
ogy, many experiments have been conducted for the selection
of informative genes regarding various kinds of diseases. These
experiments are performed by medical institutes on their own
sets of subjects. Due to the high cost of the DNA microar-
ray assessment and the limited number of subjects, such
experiment datasets contain only small numbers of samples,
usually less than one hundred. However, there are always huge
numbers of genes in the datasets compared with the numbers
of samples. This fact introduces the small sample problem,
which causes overfitting in data analysis. In such cases, the

irrelevant genes might get high importance scores while the
real informative genes might obtain lower importance scores
due to the randomness, which reduces the performance of the
gene selection [4].

A good thing is, in many cases, the microarray data re-
garding a particular disease is distributed among multiple insti-
tutes, because different institutes have conducted experiments
regarding the same disease on different sets of subjects. This
fact provides an opportunity for the institutes to collaborate
with each other and learn on the union of their data so as to
achieve better performance. However, the privacy concern may
stop them from doing this because the microarray data contain
private information about the test subjects.

To solve this problem, we propose a privacy preserving
algorithm that enables multiple parties to perform the Fisher
criterion method for gene selection on the union of their data
without revealing each party’s data to others. To the best of
our knowledge, this is the first work that addresses the privacy
issues in applying the Fisher criterion on distributed data. Our
method can be used not only for informative gene selection, but
also in other fields for feature selection with privacy concerns.

In this work, we assume that the microarray experiments
and the generation of data in different institutes are performed
with some common standards, so that the data from different
parties are directly comparable. There are plenty of studies
on the standards of microarray data, such as [5]. Since it is
beyond the scope of this paper, we will not further discuss it.

The rest of this paper is organized as follows: We present
the related work in Section II and the technical preliminaries
in Section III. Technical preliminaries include the background
knowledge about the Fisher criterion and the cryptographic
tools we utilize. The details of our method is shown in Section
IV. In Section V, we experimentally evaluate the algorithm.
Finally, Section VI concludes the paper.

II. RELATED WORK

In recent years, with the growing awareness of privacy
problems in data analysis, more and more data analyzing algo-
rithms have been enhanced to be privacy preserving, including
decision tree classification [6], [7], k-means clustering [8], [9],
gradient descent methods [10], and others.

There are also some studies of privacy preserving feature
selection and gene selection on distributed data. [11] extends
the feature selection method virtual dimension reduction,
which is used in the hyperspectral image processing field, to be
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privacy preserving. [12] assumes the data to be distributed in a
large number of parties which form an asynchronous peer-to-
peer network, and develops the privacy preserving solutions
for three feature selection measures in this scenario: mis-
classification gain, Gini index, and entropy. [13] extends the
support vector machine recursive feature elimination (SVM-
RFE) method to be privacy preserving on distributed data for
gene selection. However, as far as we know, there is no privacy
preserving solution for the Fisher criterion method, which is
such a popular and effective tool for feature selection, on
distributed data.

In the literature of privacy preserving data analysis, to
protect the basic operations in the algorithms, many secure
building blocks are developed, such as secure sum [14], secure
comparison [15], [16], secure multiplication [17], secure scalar
product [14], [18], [19], secure matrix multiplication [20]–[22],
secure logsum computation [23], etc..

III. TECHNICAL PRELIMINARIES

A. Fisher Criterion for Gene Selection

We briefly introduce the Fisher criterion for gene selection.
Fisher criterion is a score that is calculated on each gene to
evaluate how informative the gene is. The more informative a
gene is, the more helpful it is in differentiating one class from
another. For a gene j, its Fisher criterion score is:

Fj =
(μj

1 − μj
2)

2

(σj
1)

2 + (σj
2)

2
, (1)

where μj
1 is the mean value of gene j for class 1 and μj

2 is the

mean value of gene j for class 2. Similarly, σj
1 and σj

2 are the
standard deviations of gene j for classes 1 and 2, respectively.

With this criterion, the genes that obtain higher scores have
mean values differ greatly between the two classes, relative to
their variances [24]. Such genes are more informative in the
classification.

B. Privacy Protection of the Fisher Criterion

1) Data Distribution: As explained in Section I, we as-
sume that each party holds her own set of samples and the
whole set of genes. This means that the data is horizontally
distributed among the parties.

2) Semi-Honest Model: Our privacy preserving solution of
the Fisher criterion is developed under the widely used semi-
honest model [6], [10], [14], [18], [25]–[28], which assumes
the parties to be ”honest but curious”. This means that the
parties follow the protocols strictly, but they would attempt
to derive the private information of other parties as much as
possible from the intermediate results they obtain during the
execution of the protocols. This assumption is reasonable in
our case, because that all the parties are willing to obtain the
correct scores, so they do not want to violate the protocols and
get invalid results.

With the semi-honest assumption, we need to protect all
the intermediate results during the computation, including the
aggregate information such as sum and average of individual
data. These information would help the parties derive the
private information of others.

C. Cryptographic Tools

1) Homomorphic Cryptographic Scheme: In this work, we
utilize an additive homomorphic asymmetric cryptographic
system to do the encryption and decryption operations on the
data. In an asymmetric cryptographic system, there is a pair of
keys: a public key used for encryption and a private key used
for decryption. Here we denote the encryption of a message
m by E(m), and the decryption of the ciphertext E(m) by
D(E(m)). Obviously, D(E(m)) = m.

Homomorphic cryptographic systems allow the computa-
tions to be carried out on encrypted data directly. A cryp-
tographic system is additive homomorphic if there exist two
operators ⊕ and ⊗ that, for any two integers x1, x2 and any
constant a, we have

E(x1 + x2) = E(x1)⊕ E(x2),

E(a× x1) = a⊗ E(x1).

This means, with an additive homomorphic cryptographic
system, we can compute the encrypted sum of integers, E(x1+
x2), directly from the encryptions of the two integers, E(x1)
and E(x2). There is no need to decrypt them and add them
up.

2) ElGamal Cryptographic system: There are several ad-
ditive homomorphic cryptographic schemes [28], [29]. In this
work, we use a variant of the ElGamal scheme [30]. It is
semantically secure under the Diffe-Hellman Assumption [31],
and has been widely used in the literature such as in [28].

ElGamal cryptographic system is a multiplicative homo-
morphic asymmetric cryptographic system. In this system,
there are some parameters: the generator g, the private key
x, and the public key y that y = gx. With this system, the
encryption of a message m is such a pair:

E(m) = (m× yr, gr),

where r is a random integer.

We denote the first part of the pair by c1 and the second part
by c2 so that c1 = m× yr and c2 = gr. To decrypt E(m), we
use the private key x and compute s = cx2 = grx = gxr = yr.
Then do c1×s−1 = m×yr×y−r and we can get the cleartext
m.

In the variant of ElGamal scheme we use, the integer m is
encrypted in such a way:

E(m) = (gm × yr, gr).

The only difference between the original ElGamal scheme
and this variant is that m in the first part is changed to gm.
With the change, this variant is an additive homomorphic
cryptographic system such that:

E(x1 + x2) = E(x1)× E(x2),

E(a× x1) = E(x1)
a.

To decrypt E(m), we follow the same procedure as in the
original ElGamal algorithm. Because of the change, after the
above decryption process, we get gm instead of m. So we add
an additional step to obtain m from gm.
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In this paper, the private key is additively shared by all
the parties and no party knows the complete private key.
The parties have to cooperate with others to perform the
decryptions, so the ciphertexts can be exposed to every party
since no party can decrypt them alone.

The private key is shared in this way: Suppose there are two
parties, parties A and B. A has a part of private key, xA, and B
has the other part, xB , such that xA+xB = x, where x is the
complete private key. In the decryption, we need to compute
s = cx2 = cxA+xB

2 = cxA
2 × cxB

2 . Party A calculates sA = cxA
2

and party B calculates sB = cxB
2 so that s = sA × sB . We

need to do c1 × s−1 = c1 × (sA × sB)
−1 = c1 × s−1

A × s−1
B .

Party A computes c1×s−1
A and sends it to party B. Then party

B computes c1 × s−1
A × s−1

B = c1 × s−1 = gm and sends it to
A. In this way both parties can get the decrypted result. Here
since party B performs her decryption part later, she gets the
final result earlier. If she does not send the result to A, the
decrypted result is only known to party B. The order of the
parties in the decryptions can be changed, so if we need the
result to be known to only one party, the party should do her
decryption later.

3) Secure Multiplication: Since the additive homomorphic
cryptographic system only supports the addition of integers
in the ciphertext form and does not support the direct mul-
tiplication of integers in ciphertext form, we use the secure
multiplication protocol that we previously proposed in [17] to
achieve the multiplication operation. The input of the protocol
are two encryptions of integers, E(x) and E(y), and the output
is the encryption of the product of the two integers, E(x×y).
The basic procedure of the protocol is as follows:

First, party A generates a random integer xA. Then party
A computes E(x− xA), and sends it to party B.

Second, the two parties coordinately decrypt E(x − xA)
and only party B gets the result x− xA = xB .

Third, parties A and B rerandomize E(y) and obtain E′(y)
and E′′(y), respectively. Then they calculate E′(xA × y) and
E′′(xB × y), respectively, and exchange the two values.

Finally, parties A and B compute E(x× y) = E(xA× y+
xB × y) by themselves.

4) Secure Logsum Computation: In this work, we are
inspired by the secure logsum computation proposed in [23].
The input are two d-dimensional vectors, x = (x1, x2, . . . , xd),
which is from party A, and y = (y1, y2, . . . , yd), which is from
party B. The output are two additive shares sA held by party

A and sB held by party B that sA+sB = log(
∑d

i=1 10
xi+yi).

The basic idea of the secure logsum algorithm is:

First, party A computes vector 10x−q where q is a random
number generated by A and party B computes vector 10y .

Second, the two parties apply the secure scalar product
protocol [19] to calculate the scalar product of the two vectors

10x−q and 10y . The result φ =
∑d

i=1 10
xi+yi−q is only known

to party B.

Finally, party B computes sB = log φ =
log(

∑d
i=1 10

xi+yi) − q and party A has sA = q so that

sA + sB = log(
∑d

i=1 10
xi+yi).

IV. PRIVACY PRESERVING CALCULATION OF THE FISHER

CRITERION SCORE

In this section, we present our method to securely calculate
the Fisher criterion score on data distributed between two
parties A and B. It can be easily extended to the multiparty
case, where the number of parties is larger than two. For
simplicity, we just consider the two-party case here.

As shown in Section III, the Fisher criterion score of gene
j is:

Fj =
(μj

1 − μj
2)

2

(σj
1)

2 + (σj
2)

2
,

where μj
1 and μj

2 are the mean values of gene j for classes 1
and 2, respectively, and σj

1 and σj
2 are the standard deviations

of gene j for classes 1 and 2, respectively.

We have:

μj
1 =

∑
xi∈C1

xj
i

n1
=

Sj
1

n1
,

μj
2 =

∑
xi∈C2

xj
i

n2
=

Sj
2

n2
,

where xi is sample i, and xj
i is the value of sample i on gene

j. S1 =
∑

xi∈C1
xj
i is the sum of all values of samples in class

1 on gene j and S2 =
∑

xi∈C2
xj
i is the sum of all values of

samples in class 2 on gene j. n1 is the number of samples in
class 1, and n2 is the number of samples in class 2.

We also have

(σj
1)

2 =

∑
xi∈C1

(xj
i − μj

1)
2

n1
=

∑
xi∈C1

(xj
i − Sj

1

n1
)2

n1
,

(σj
2)

2 =

∑
xi∈C2

(xj
i − μj

2)
2

n2
=

∑
xi∈C2

(xj
i − Sj

2

n2
)2

n2
.

With the above calculations of means and variances, the
computation of the Fisher criterion becomes

Fj =
(μj

1 − μj
2)

2

(σj
1)

2 + (σj
2)

2

=
(
Sj
1

n1
− Sj

2

n2
)2

∑
xi∈C1

(xj
i−

S
j
1

n1
)2

n1
+

∑
xi∈C2

(xj
i−

S
j
2

n2
)2

n2

=
n1n2(n2S

j
1 − n1S

j
2)

2

n3
2

∑
xi∈C1

(n1x
j
i − Sj

1)
2 + n3

1

∑
xi∈C2

(n2x
j
i − Sj

2)
2
.

Now we show how to calculate the score securely. n1 and
n2 are known to both parties, so we need to calculate the sums
Sj
1 and Sj

2 , and accomplish the square and division operations
securely.
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A. Computation of the Sums

Here we show the computation of the encryptions of sums
Sj
1 and Sj

2 . To compute E(Sj
1), party A add up all the

values of samples in class 1 on gene j in her own dataset,
and obtain her own sum Sj

1A. Party B compute her own

sum Sj
1B in the same way. Then they encrypt the two sums

and exchange the encryptions E(Sj
1A) and E(Sj

1B). With the
additive homomorphic property of the cryptographic system,
both parties can get E(Sj

1) = E(Sj
1A + Sj

1B) from E(Sj
1A)

and E(Sj
1B). E(Sj

2) can be calculated in the same way.

B. Computation of the Squares

With E(Sj
1) and E(Sj

2), we can compute the encryptions

of the squares (n2S
j
1 − n1S

j
2)

2,
∑

xi∈C1
(n1x

j
i − Sj

1)
2 and

∑
xi∈C2

(n2x
j
i −Sj

2)
2 under the help of the secure multiplica-

tion protocol [17] and the homomorphic property.

For the square (n2S
j
1 − n1S

j
2)

2, E(n2S
j
1) and E(n1S

j
2)

can be calculated from E(Sj
1) and E(Sj

2). Then E((n2S
j
1 −

n1S
j
2)

2) can be calculated with the secure multiplication
protocol.

To calculate the encryption of the square
∑

xi∈C1
(n1x

j
i −

Sj
1)

2, for each sample xi ∈ C1, n1x
j
i is known by the

party holding xi. Then E(n1x
j
i ) can be obtained. E(Sj

1)
is also known, so E((n1x

j
i − Sj

1)
2) can be calculated. Af-

ter the squares of all the samples in class 1 are com-
puted, the parties add up their squares and exchange their
sums. Then E(

∑
xi∈C1

(n1x
j
i − Sj

1)
2) can be computed.

E(
∑

xi∈C2
(n2x

j
i − Sj

2)
2) is obtained in the same way.

C. Computation of the Quotient

With the encryptions of the squares, we have the en-
cryptions of n1n2(n2S

j
1 − n1S

j
2)

2 and n3
2

∑
xi∈C1

(n1x
j
i −

Sj
1)

2 + n3
1

∑
xi∈C2

(n2x
j
i − Sj

2)
2. We want to compute the

quotient of them. To make it simple, we use a and b to
denote the two values such that a = n1n2(n2S

j
1 − n1S

j
2)

2

and b = n3
2

∑
xi∈C1

(n1x
j
i − Sj

1)
2 + n3

1

∑
xi∈C2

(n2x
j
i − Sj

2)
2.

We have E(a) and E(b), and we want to compute a/b.

Directly computing a/b from E(a) and E(b) is hard since
the additively homomorphic cryptographic system does not
support the secure computation of the division operation be-
tween two encrypted integers. So we need to calculate log(a/b)
instead of a/b, which turns the division into a substraction:
log(a/b) = log a − log b. Now let us show how to calculate
log(a/b).

First, we change the share pattern of a and b between the
parties. We want them to be additively shared between the
parties in the way that party A holds aA and bA, and party
B holds aB and bB , where aA + aB = a and bA + bB = b.
To achieve this, party A generates a random integer aA and
computes E(a − aA) from E(a) and E(aA), and sends it to
party B. Then the two parties coordinately decrypt E(a− aA)
and only party B gets the result a − aA = aB . Similarly, bA
and bB can be computed.

After this step, we can calculate log(a/b) = log a−log b =
log(aA + aB)− log(bA + bB). Inspired by the secure logsum
protocol [23], we calculate log(aA + aB) as follows:

• Party A generates a random number q, and encrypts
aA/10

q and 1/10q . Then A sends E(aA/10
q) and

E(1/10q) to B.

• After receiving E(aA/10
q) and E(1/10q), party B

calculates E(aB/10
q) from E(1/10q) and her own

share aB . Then B can obtain E(aA/10
q + aB/10

q) =
E((aA + aB)/10

q) = E(10log(aA+aB)−q).

• Parties A and B jointly decrypt E(10log(aA+aB)−q) and
only B gets the result φ = 10log(aA+aB)−q .

• Party B computes log φ = log(aA + aB) − q. So that
party A has sA1 = q and B has sB1 = log(aA + aB)− q.
sA1 + sB1 = log(aA + aB).

Please notice that, aA/10
q and 1/10q are encrypted with

different random numbers, so that party B cannot derive any
information by comparing the two encryptions E(aA/10

q) and
E(1/10q).

Similarly, we can get sA2 + sB2 = log(bA + bB). Then we
have:

log(a/b) = log(aA + aB)− log(bA + bB)

= (sA1 + sB1 )− (sA2 + sB2 )

= (sA1 − sA2 ) + (sB1 − sB2 ).

sA1 − sA2 can be computed by party A and sB1 − sB2 can be
computed by party B. The two parties then exchange the two
values and both of them can get log(a/b) and calculate a/b,
which is the Fisher criterion score Fj .

The whole procedure of the privacy preserving computation
of the Fisher criterion score is summarized in Algorithm 1.

Algorithm 1 Privacy Preserving Calculation of the Fisher
Criterion Score

Input: Party A and party B both have a set of samples. The
total number of samples in class 1 is n1 and the total
number of samples in class 2 is n2;

Output: The Fisher criterion score of gene j, Fj ;
1: Party A computes her own sum of sample values on gene

j for the two classes, Sj
1A and Sj

2A. So does party B;
2: Parties A and B exchange the encryptions of their own

sums, and get E(Sj
1) and E(Sj

2);
3: The two parties compute E((n2S

j
1 − n1S

j
2)

2),
E(

∑
xi∈C1

(n1x
j
i − Sj

1)
2) and E(

∑
xi∈C2

(n2x
j
i − Sj

2)
2)

from E(Sj
1) and E(Sj

2) under the help of the secure
multiplication protocol;

4: Parties A and B jointly compute the logarithm of the Fisher
criterion score, logFj = log(n1n2(n2S

j
1 − n1S

j
2)

2) −
log(n3

2

∑
xi∈C1

(n1x
j
i −Sj

1)
2 +n3

1

∑
xi∈C2

(n2x
j
i −Sj

2)
2);

5: Parties A and B compute Fj from logFj ;

D. The Practical Issue

Before we proceed to the experiment part, we first show
the practical issue in implementing the algorithm. This issue
appears due to the fact that the cryptographic system we use
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is defined over an integer ring. So we need to deal with the
real numbers which are not integers.

There are two steps that would introduce such real num-
bers: First, the data itself may contain values which are not
integers. Second, in the calculation of log(aA + aB), numbers
like aA/10

q might not be integers.

To solve this problem, we convert the non-integer numbers
to integers by multiplying them with a magnitude of 10, and
then round the products to integers. After the decryption,
we divide the numbers by the magnitude to recover the
original numbers. Please note that we only need to do the
divisions to recover the numbers produced in the logarithm
computation, because the magnitude multiplied to the original
data is naturally eliminated in the Fisher criterion quotient.

This is the only operation that causes accuracy loss in our
method. Clearly, as the magnitudes increase, the accuracy loss
should decrease. We will show this in the experimental results.

V. EXPERIMENTS

In this section, we present the experimental results. Matlab
is used to perform the experiments and evaluate the accuracy
of our algorithm.

A. Dataset Description

We test our method on three widely used real world
microarray gene expression datasets: The leukemia dataset [2],
the prostate cancer dataset [32], and the SRBCT dataset [33].

The leukemia dataset is one of the most popular microarray
datasets, which contains gene expression information of sam-
ples from human acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). There are 5147 genes, and
72 samples, in which 47 are ALL samples and 25 are AML
samples. All the values in this dataset are integers.

The prostate cancer dataset includes the gene expression
information of samples from prostate tumors and adjacent
prostate tissue not containing tumor. This dataset involves
12533 genes, and 102 samples. 50 of the samples are normal
tissue samples and the other 52 samples are prostate tissue
samples. The values in this dataset are also integers.

Since both of the above two datasets contain only integers,
we also use the small round blue cell tumor (SRBCT) dataset,
which contains non-integer real numbers, to test our method.
This dataset contains four classes of childhood tumors, which
are Ewing’s family of tumors (EWS), neuroblastoma (NB),
Burkitt’s lymphoma (BL) and rhabdomyosarcoma (RMS). We
use the data of the two classes: NB and BL. There are 18 NB
samples and 11 BL samples. The number of genes is 2308.

B. Evaluation Metrics

Here we discuss the metrics that evaluate the accuracy of
the proposed algorithm. Since our method extends the Fisher
criterion to be privacy preserving, the ”accuracy” in our work
means the similarity between the results achieved by our
method on distributed data and the results obtained with the
original Fisher criterion on centralized data. The more similar
the two kinds of results are, the more accurate our method is.

With the cryptographic system we use, the data are pro-
tected in the way of encryption, not perturbation. The only
part that causes accuracy loss is the above mentioned rounding
operations of non-integer numbers. Here this accuracy loss is
measured with two metrics, the score error and the miss rate.

1) Score Error: The score error es is defined as the
relative error between the Fisher criterion score calculated
with the proposed privacy preserving approach, F p, and the
score calculated with the original approach, F o, such that
es = |F o − F p|/F o. This error can be computed for each
Fisher criterion score that is calculated. For each dataset and
for each setting of the magnitudes of 10 used for rounding the
non-integer numbers, we compute an average score error.

2) Miss Rate: Fisher criterion is used for gene selection.
Genes are sorted according to their Fisher criterion scores
and the genes with higher scores are considered to be more
informative. We use the miss rate Rm to evaluate the miss
gene selection rate of the proposed method compared with the
original criterion. The miss rate is calculated as Rm = ne/n,
where ne is the number of genes that are assigned different
orders by the privacy preserving approach and the original
approach in the sorting of Fisher criterion scores, and n is the
total number of genes. For each dataset and for each setting
of the magnitudes of 10 used for rounding the non-integer
numbers, we compute a miss rate.

C. Experimental Results

We present the experimental results on the three datasets
and show how the accuracy loss decreases as the magnitude
increases.

1) Leukemia Dataset: In this dataset, since all the data
values are integers, we only round the non-integer numbers
generated in the logarithm computation. We show how the
score error and miss rate change as the magnitude increases
in Table I.

TABLE I: The Accuracy Loss of the Leukemia Dataset
Magnitude Average Score Error Miss Rate

101 1.2× 10−7 0

102 2.6× 10−8 0

103 1.6× 10−9 0

104 2.0× 10−10 0

105 1.6× 10−11 0

It can be found from the table that as the magnitude
increases, the average score error decreases while the miss
rates remains to be 0. This means that although there is certain
accuracy loss in the calculation of the Fisher criterion score,
this loss does not affect the selections of genes. The proposed
method provides the same ordering of genes as the original
criterion.

2) Prostate Cancer Dataset: Similar to the leukemia
dataset, this dataset contains integers only and we only need
to round the non-integer numbers generated in the logarithm
computation. Table II shows the score errors and the miss
rates of the proposed algorithm under different settings of the
magnitude.

The change of the average score error follows the same
trend as in the leukemia dataset. When the magnitude is 101

and 102, the miss rate is 1.6×10−4, which means that 2 out of
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TABLE II: The Accuracy Loss of the Prostate Cancer Dataset
Magnitude Average Score Error Miss Rate

101 7.9× 10−6 1.6× 10−4

102 1.7× 10−6 1.6× 10−4

103 1.1× 10−7 0

104 1.3× 10−8 0

105 1.0× 10−9 0

12533 genes receive different orders from the proposed method
and the original method. When the magnitude increases to 103,
the miss rate reduces to 0.

3) SRBCT Dataset: This dataset contains non-integer num-
bers, so we need to round both the input data values and the
numbers generated in the logarithm computation. The accuracy
loss is shown in Table III.

TABLE III: The Accuracy Loss of the SRBCT Dataset
Magnitude Average Score Error Miss Rate

101 1.0202 0.9809

102 0.0389 0.8904

103 0.0031 0.4749

104 4.1× 10−11 0

105 3.6× 10−14 0

It can be seen that when the magnitude is 101 and 102, the
accuracy loss is huge. This is because that many data values
in the dataset is around 10−1 and 10−2, and by multiplying
them with 101 and 102 and rounding them, much information
is lost. For example, to round the two numbers 0.01 and 0.02
after multiplying them with 10, we can get 0 as both of the
two results. However, as the magnitude increases, the accuracy
loss is significantly reduced.

VI. CONCLUSIONS

In this paper, we proposed a privacy preserving algorithm
that allows two parties to calculate the Fisher criterion scores
of genes on the union of their samples without revealing each
party’s samples to the other. The calculations were achieved
with the additive homomorphic cryptographic system and
several secure protocols were utilized to realize the secure
operations on the data. We evaluated the accuracy loss of
the proposed method by comparing it with the original Fisher
criterion on three real world microarray datasets and shown
that with appropriate parameter setting, the accuracy loss
can be very low and does not affect the selection of genes.
Although we focus on the informative gene selection problem
in this work, the method can be used in other feature selection
problems.
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