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Abstract—Long non-coding RNAs (lncRNAs) have been
implicated in various biological processes, and are linked in
many dysregulations. Researchers have reported large number
of lncRNA associated human diseases over the past decade. In
this article we employed the Non-negative Matrix Factorization
method to develop a low-dimensional computational model
that can describe the existing knowledge about lncRNA-disease
associations represented in a two dimensional association
matrix. The non-negativity constraints of the matrix and its
corresponding factors ensure that each lncRNA’s disease profile
can be represented as an additive linear combination of the
latent coordinates. To learn such a constrained model from an
incomplete association matrix, several NMF formulations were
developed. Based on our experiments, we found that the Sparse
NMF obtained the best model among all the other models.
Moreover, by exploiting the inherent bi-clustering ability of
the NMF models, we extracted several lncRNA groups and
disease groups that possess biological significance.

I. INTRODUCTION

With the advent of the Next Generation Sequencing

(NGS) platform it is experimentally verified that the protein-

coding genes account for only a small fraction of the human

genome (∼ 1.5%). In other words, more than 98% of the

human genome do not code any protein; the fact implies

that the traditional central dogma of molecular biology

[1] is incomplete. There exists another branch along with

the “traditional” dogma that explains a huge number of

the non-protein coding genes that undergo transcription but

never translate proteins [2]–[4]. Accumulating evidences

reported over the past decade shed lights on many these

non-coding RNAs (ncRNAs) and their functionalities in bi-

ological processes. The long non-coding RNAs (lncRNAs),

a subclass of the ncRNAs having length more than 200

bases are discovered to be associated with many biological

processes, such as imprinting control, epigenetic regulation,

cell cycle control, nuclear and cytoplasmic trafficking, cell

differentiation, immune responses and chromosome dynam-

ics [5]. It is rather not surprising to discover the fact

that the dysregulations and mutations of the lncRNAs are

implicated in variety of human diseases [6]–[8]. That is why,

a comprehensive understanding of potential human disease-

related lncRNAs can facilitate development of our current

knowledge-base; essentially that could explain accurately the

molecular mechanisms of human diseases, their implications

and also facilitate the diagnosis, treatment, prognosis and

prevention [9], [10].

There are plenty of research efforts that have contributed

into characterizing lncRNAs by generating the correspond-

ing sequences, expression profiles and genomic annota-

tions. But, only a few studies have been conducted to

infer lncRNA-disease associations. Of the few, Liao et al.

[11] proposed the concept of coding-non-coding gene co-

expression (CNC) network which was constructed from

several gene expression dataset of coding and non-coding

genes. The authors then conducted prediction of similar

functional characteristics of lncRNAs from the CNC net-

works using a graph analytical approach. Guo et al. [12]

developed a long non-coding RNA global function predictor

(lnc-GFP) to predict probable functions for lncRNAs at

large scale by integrating gene expression data and protein-

protein interaction data. They also employed the concept of

CNC network by Liao et al [11]. But here the weighted

CNC network was constructed using both the co-expression

data and the protein-protein interaction data. Once the CNC

network is built, a global propagation algorithm that is

guaranteed to converge to a local minimum. The algorithm

outputs the rank of all un-annotated genes with respect to

a query function category. Finally, the top-ranked genes are

functionally annotated with the function category of interest.

Yang et al. [13] presented a method to analyze lncRNA-

disease associations, that can be used to predict lncRNA

implicated diseases. Based on the available lncRNA-disease

associations, two biological networks were constructed – an

lncRNA-implicated disease network (lncDN) and disease-

associated lncRNA network (DlncN). In lncDN, a ver-

tex represents a disease, and a link between two vertices

indicates the two corresponding diseases shared at least

one lncRNA as their disease-causing lncRNA. However, in

DlncN, a vertex represents an lncRNA, while a link between

two nodes represents the fact that the two corresponding

lncRNAs were implicated in at least one common disease. A

graph analytical approach was applied to extract the similar

lncRNAs and disease from these projected networks. More-

over, a propagation algorithm was applied on a weighted

bipartite network of the lncRNA-disease associations to
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predict potential. Thus, by modeling the lncRNA-disease

association as a bipartite network, and by mining the resul-

tant network lncRNA and disease association scores were

predicted. Chen et al. [10] developed a method of Laplacian

Regularized Least Squares for LncRNA-Disease Association

(LRLSLDA) that considered integrating the lncRNA tissue

expression profiles obtained from the Human BodyMap

LincRNA project [14]. The method prioritized the entire

lncRNAome for disease of interest by integrating known

phenome-lncRNAome network obtained from the existing

database of lncRNA-disease associations.

Previous studies of lncRNA-disease associations either

employed graph mining strategies by employing layered

information of both coding and non-coding RNA transcripts,

or expression profiles available on different tissue levels

[14], even though not all lncRNAs are tissue-specific, and

the expression profiles are available only at the intergenic

regions of human genome. The profiles cannot be charac-

terized as either from case or control specimens, which is

not always appropriate in disease related lncRNA inference

studies to some extent. However, if we look at the literatures

already published with evidences of lncRNA-disease asso-

ciations, a computational modeling of the the associations

can be explained, that would be useful to predict future

associations. In this article, we developed computational

framework to build such models.

The rest of the article is structured as follows: section 2

presents the details of the dataset used in this study, along

with the preprocessing step. The lncRNA-disease association

problem is formulated later in the section. Then, at section 3

we present experimental results along with the applicability

of our method. Finally, conclusions and future research

directions are drawn at the section 4.

II. MATERIALS AND METHODS

In this section, we describe our framework for the devel-

opment of lncRNA-disease association model, along with

steps to cluster both associated lncRNAs, and diseases

simultaneously (Figure 1).

A. Data sources and Preprocessing

We obtained the latest version of lncRNA-disease associa-

tion list from the publicly available LncRNAdisease database

repository located at the http://www.cuilab.cn/lncrnadisease

[9] on the 15th day of June, 2014. The developers of

the repository curated the data manually from PubMed

and retrieved lncRNA-disease pairs. The present release

(6/15/2014) have integrated 1028 experimentally and pub-

lished association entries among 322 lncRNAs and 221

diseases. We encoded the association list in a matrix A of

size 322 × 221. Each (i, j) entry of the matrix is filled up

as follows: if there is at least one evidence of association

between ith lncRNA and j th disease, then the entry would be

1, otherwise 0. An alternate approach of encoding would be

Figure 1. Overview of the proposed method for developing model to
predict lncRNA-disease associations.

to put the frequency of reports supporting the associations

in each entry. However, both the encoding schemes enforce

the matrix A to be strictly non-negative.

B. NMF-based Problem Formulation

The lncRNA-disease association matrix A ∈ R
m×n
+ ,

where m and n are the number of lncRNAs and diseases

respectively, and Ai,j = 1 denoting there is at least one

experimental evidence present that support association be-

tween lncRNA i with disease j, otherwise the cell value

would be 0. Each column of the matrix A corresponds to

a data point in the m-dimensional space. The non-negative

matrix factorization (NMF) [15], [16] technique divides such

a matrix into two non-negative matrices: a basis matrix of

lower rank W ∈ R
m×r
+ and a coefficient matrix H ∈ R

r×n
+ ,

where the rank r < min{m,n}, so that

A ≈WH (1)
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An NMF solution is not unique, because of the fact that, for

any diagonal matrix D ∈ R
r×r
+

A ≈WH = WDD−1H = (WD)(D−1H) = V G

where, V = WD and G = D−1H . Both the matrices V
and G are not necessarily equal to W and H respectively,

implies the non-uniqueness property of the solution to the

equation 1.

A solution to the NMF problem, however, can be obtained

by solving the following optimization problem:

min
W,H

F(A,W,H) ≡ ||A−WH||2F
s.t.,W ≥ 0, H ≥ 0

(2)

where W ∈ R
m×r
+ is a basis matrix, and H ∈ R

r×n
+ is

a coefficient matrix. W,H ≥ 0 means that all elements of

W and H are non-negative. Since r < m and r < n, di-

mensionality reduction is achieved, and a lower dimensional

representation of A in a r-dimensional space is given by

H .|| · ||2F is the square of the Frobenius norm and is defined

as

||A−WH||2F = tr((A−WH)(A−WH)T )

where tr is the matrix trace operator.

The fact that W and H are non-negative guarantees that

parts of the matrix can be combined additively to form

the given association matrix as a whole; NMF is a useful

technique for obtaining a part-based representation of the

data. In other words, factorization allows us to easily identify

substructures in the data [17]. Several approaches to solve

NMF by iteratively updating W have been presented in

earlier studies [18]. Additional Bioinformatics applications

of NMF are presented in a review article by Devarajan

[19]. Several variants of NMF have been proposed by

incorporating various kinds of constraints: discriminative

constraints [20], locality-preserving or network-regularized

constraints [21], [22] and sparsity constraints [23], [24].

One non-negative matrix factorization algorithm devel-

oped by Lee and Seung [15] is based on the multiplicative

update rules of W and H , and is shown in Algorithm

1. The approximations of W and H remain non-negative

during the updates. It is generally best to update W and

H “simultaneously”, instead of updating each matrix fully

before the other [25]. That is, after updating a row of

H , we update the corresponding column of W . In the

implementation, we added a small quantity ε = 10−9 to the

denominators in the approximations of W and H in each

iteration.

Pauca et al. [25] proposed a constrained NMF (CNMF)

formulation,

min
W,H

||A−WH||2F + α||W ||2F + β||H||2F
s.t.,W ≥ 0, H ≥ 0

(3)

Algorithm 1 General NMF. Calculate W,H such that A ≈
WH

Input: A ∈ R
m×n
+ , rank r, and the two initial seed

matrices W ∈ R
m×r
+ and H ∈ R

r×n
+

Step 1: Normalize columns of A.

Step 2: Scale columns of W to sum to 1.

Step 3: Update H and W matrices using the following

update rules:

Hqj ← Hqj
(WTA)qj

(WTWH)qj + ε
, (1 ≤ q ≤ r, 1 ≤ j ≤ n)

Wiq ←Wiq
(AHT )iq

(WHHT )iq + ε
, (1 ≤ i ≤ m, 1 ≤ q ≤ r)

Step 4: Scale columns of W to sum to 1.

Step 5: Repeat steps 3–5 until convergence

where α and β are regularization parameters. Algorithm

2 can be used to retrieve the two factors W and H .

The regularization parameters α ∈ R and β ∈ R are

Algorithm 2 CNMF/Regularized NMF. Calculate W,H
such that A ≈WH

Input: A ∈ R
m×n
+ , rank r, and the two initial seed

matrices W ∈ R
m×r
+ and H ∈ R

r×n
+

Step 1: Normalize columns of A.

Step 2: Scale columns of W to sum to 1.

Step 3: Update H and W matrices using the following

update rules:

H
(t)
qj ← H

(t−1)
qj

((W (t−1))TA)qj − βH
(t−1)
qj

((W (t−1))TW (t−1)H(t−1))qj + ε

for 1 ≤ q ≤ r, 1 ≤ j ≤ n

W
(t)
iq ←W

(t−1)
iq

(A(H(t))T )iq − αW
(t−1)
iq

(W (t−1)H(t)(H(t))T )iq + ε

for 1 ≤ i ≤ m, 1 ≤ q ≤ r
Step 4: Scale columns of W to sum to 1.

Step 5: Repeat steps 3–5 until convergence

used to balance the trade-off between the accuracy of the

approximation and the smoothness of the computed solution.

Sparseness constraints can be enforced on W or H in

the NMF formulation (Equation 2). Kim and Park [24] in-

troduced two formulations and the corresponding algorithms

for sparse NMFs – SNMF/L for sparse W , and the SNMF/R

for sparse H . The following is the formulation of SNMF/L:

min
W,H

1

2
{||A−WH||2F + η||H||2F + β

m∑
i=1

||W (i, :)||21}

s.t.,W ≥ 0, H ≥ 0

(4)
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Here, the parameter β is used to adjust the sparsity in W
while the parameter η is used to preserve accuracy in H .

And the formulation of the SNMF/R is:

min
W,H

1

2
{||A−WH||2F + η||W ||2F + β

n∑
j=1

||H(:, j)||21}

s.t.,W ≥ 0, H ≥ 0

(5)

Again, the parameter β is used to adjust the sparsity in H
and the parameter η is used to preserve the accuracy in W .

Each of these two sparse NMF formulations that imposes the

sparsity either on W or H utilizes L1-norm minimization

and the corresponding algorithms are based on Alternating

Non-negativity constrained Least Squares (ANLS) [24]. The

ANLS problem for SNMF/L is shown below:

min
H

∥∥∥∥∥∥
(

W
√
ηIr

)
H −

(
A

0r×n

)∥∥∥∥∥∥
2

F

, s.t.H ≥ 0 (6)

min
W

∥∥∥∥∥∥
(

HT

√
βe1×r

)
WT −

(
AT

01×m

)∥∥∥∥∥∥
2

F

, s.t.W ≥ 0

(7)

Similarly, the ANLS problem for the SNMF/R formula-

tion is given below:

min
H

∥∥∥∥∥∥
(

W√
βe1×r

)
H −

(
A

01×n

)∥∥∥∥∥∥
2

F

, s.t.H ≥ 0 (8)

min
W

∥∥∥∥∥∥
(

HT

√
ηIr

)
WT −

(
AT

0k×m

)∥∥∥∥∥∥
2

F

, s.t.W ≥ 0 (9)

C. LncRNA-Disease Association Inference

Non-negative Matrix Factorization models map both the

lncRNAs and diseases to a joint latent factor space of

dimensionality r, such that lncRNA-disease association are

modeled as the inner products in the latent feature space

(f1, f2, · · · , fr). Accordingly, each lncRNA i is associated

with a vector li ∈ R
r, and each disease j is associated with

a vector dj ∈ R
r. Thus, for a given lncRNA i, the elements

of the vector li measure the extent to which the lncRNA

possesses those factors, whereas for a given disease j, the

elements of dj measure the likelihood of association of the

disease with corresponding factors. The dot product li
Tdj

captures the association between lncRNA i and disease j.

This approximates the overall association of disease j with

lncRNA i, that is denoted by âij leading to the estimate

âij = li
T · dj (10)

Once the NMF factorization is complete on matrix A,

the inference system can easily estimate the likelihood of

association of an lncRNA with a disease using equation 10.

Figure 2 illustrates the inference process.

Figure 2. An abstract view of the lncRNA-disease association inference
process. At first from the list of experimentally supported lncRNA-disease
associations, the original association matrix A is formed, where Aij = x,
and x ≥ 0 is a positive integer denoting number of experimental evidences
that support the association between ith lncRNA and jth disease. Then NMF
is applied to factor A into two matrices W and H . The corresponding rows
of W and columns of H are then used to estimate the likelihood of the
association betwen lncRNAs with diseases.

D. Bi-clustering

Many traditional clustering algorithms such as Hierarchi-

cal clustering have been applied for the purpose of clustering

gene micro-array data which is an association between genes

and samples to some extent [26], [27]. These strategies have

a significant limitation: the approaches assign samples into

some specific classes based on the genes’ expression levels

across all the samples. Sometimes, it is necessary to develop

clustering methods that can identify the local structures,

instead of the global phenomenon. Moreover, it has been

shown in molecular biology that only a small number of

genes or lncRNAs are involved in a pathway or biological

process on most cases. Specifically, only a small subset of

lncRNAs are active for one cancer type, or one dysfunction,

so generating sparse bi-clustering structures (i.e., the number

of genes in each bi-clustering structure is small) is of great

interest [28]. Many bi-clustering algorithms have been devel-

oped to explore the correlations between genes and samples

and to identify the local gene-sample structures in the micro-

array data, and some other association data [29]. However,

the idea of bi-clustering is to characterize each lncRNA by a

subset of diseases and to define each disease in a similar way.

As a consequence, bi-clustering algorithms can select the

groups of lncRNAs that show similar expression behaviors

in a subset of diseases that belong to some specific classes

such as some specific cancers, or disorders, and thus identify

local structures of the association data.

Several bi-clustering algorithms have been proposed in-

cluding BiMax, ISA, SAMBA, OPSM, which are evaluated

in the review by Prelic et al [29]. However, bi-clustering
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can also be performed using NMF. The NMF factors can be

used to perform bi-clustering analysis of the data matrix. The

rows of the association matrix A represent lncRNAs, and the

columns represent diseases. We can use the basis matrix W
to divide the m lncRNAs into r lncRNA-clusters, and the

coefficient matrix H can be used to divide the n diseases

into r disease-clusters. Typically the following rules are used

to assign membership:

• ith lncRNA is assigned to the lncRNA-cluster q if the

Wiq is the largest in W (i, :), i.e., the ith row of the

matrix W .

• jth disease is assigned to the disease-cluster q if the

Hq,j is the largest in H(:, j), i.e., the jth column of the

matrix H .

III. EXPERIMENT RESULTS AND DISCUSSIONS

A. Association Models

To evaluate the performances of the models, we preferred

three widely used metrics, namely Mean Absolute Error

(MAE), Accuracy and Root Mean Squared Error (RMSE)

[30], which are defined as follow:

MAE(Ŷ,Y) =
1

|τ |
∑

(i,j)∈τ
|ŷij − yij | (11)

Accuracy(Ŷ,Y) =
1

|τ |
∑

(i,j)∈τ
(1− |ŷij − yij |)

= 1−MAE(Ŷ,Y) (12)

RMSE(Ŷ,Y) =

√√√√ 1

|τ |
∑

(i,j)∈τ
(ŷij − yij)2 (13)

where Ŷ and Y are the computed association matrix and

the observed association matrix respectively, while τ is the

set of lncRNA-disease pairs for which we want to predict

the ratings, that is, τ can be considered as the test set.

The preference between the above two metrics depends on

the particular application. In practice, MAE is popular for

many collaborative filtering algorithms, while RMSE is still

popular for the similar problems that generate real valued

output.

The lncRNA-disease associations are first split into five

random folds. Then we performed five-fold cross validation

to evaluate the model. Table I demonstrates the predictive

performance of lncRNA-disease associations by using the

three NMF models. The association matrix is first factored

into W and H matrices using the three NMF algorithms.

We performed several runs of NMF by varying rank of W
and H , which are r = 2, 10, 20, 30, 40, 50. Then the original

matrix is reconstructed by multiplying the computed W and

H matrices. The estimated matrix is then compared with

the original matrix for errors, in terms of RMSE and MAE

scores.

Since, the accuracy and MAE scores are exactly comple-

ment to each other, it is evident from the Table I that once

we increase the rank of the NMF factorization, the error

decreases, as well as accuracy increases. As the rank of the

NMF in our current dataset can only be less than 221 (that

is, the minimum of the two dimensions of the association

matrix), we showed here only the effect of choosing rank

less than 50. The trend of accuracy and MAE can be equally

observed in all of the NMF-based.

If we look at the trend of RMSE scores as the increment

of rank in the various NMF implementations, we find all

of the three algorithms show almost similar RMSE trend.

However, since the input association matrix possesses spar-

sity property, it is better to use the sparse NMF considering

the sparsity property into account. Thus, from Table I results

we can conclude that the sparse NMF (SNMF/R) performed

better than the other two NMF algorithms.

B. Bi-clustering Results

As explained in the previous section, a bi-clustering algo-

rithm enables us to explore groups of entities that are similar

within a small locality. Essentially, we are more interested

to identify groups of lncRNAs that are associated with a

very similar group of diseases, or disorders. Since, other

than the lncRNA-disease association information we did not

use any other characteristics of lncRNAs in our NMF-based

formulations in order to understand similarities between

lncRNA-pairs, it is not evidently interesting to perform

clustering on the diseases that would reveal similar diseases

groups. However, on the contrary, grouping lncRNAs reveals

a number of useful characterization of lncRNAs in terms of

the implication of diseases.

Table II lists out 10 significant clusters of lncRNAs that

we retrieved after we performed a generalized NMF on the

association matrix, and sought for two factors W and H
of rank 322 × 10, and 10 × 221, meaning we expected a

r = 10 rank approximation of the association matrix. Using

the bi-clustering strategy described in the earlier section, we

assigned membership scores for each of the 322 lncRNAs to

any of the 10 disease classes. Here the latent feature space

is 10-dimensional.

We then put the class major disease associations to the

lncRNAs in Table II and found interesting lncRNA groups.

For instance, there we see a prominent group (cluster # 5) of

lncRNAs which are associated with heart diseases. All the

lncRNAs in cluster #7 are associated with neurological dis-

orders to some extent. Cluster # 6 contains all the lncRNAs

which are mostly associated with hereditary disorders.

Cluster #1 is representing mostly the gastro-intestinal

dysfunctions. All the remaining clusters are representative to

several cancer categories and associated lncRNAs. A similar

approach can also be employed to cluster the 221 diseases

in the pool, according to the 10 latent features.
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Table I
EVALUATION OF THE THREE NMF ALGORITHMS – GENERAL/PLAIN NMF, REGULARIZED NMF AND SPARSE NMF IN TERMS OF ACCURACY, MEAN

ABSOLUTE ERROR (MAE) AND ROOT MEAN SQUARED ERROR (RMSE) BY VARYING RANKS (r).

r
Accuracy MAE RMSE

Plain
NMF

Regularized
NMF

Sparse
NMF

Plain
NMF

Regularized
NMF

Sparse
NMF

Plain
NMF

Regularized
NMF

Sparse
NMF

2 0.16 0.15 0.15 0.84 0.85 0.85 20.87 21.23 21.23
10 0.46 0.45 0.46 0.54 0.55 0.54 13.48 13.64 13.56
20 0.61 0.61 0.62 0.39 0.39 0.38 9.67 9.71 9.59
30 0.70 0.70 0.69 0.30 0.30 0.31 7.50 7.58 7.66
40 0.76 0.76 0.77 0.24 0.24 0.23 6.02 6.06 5.66
50 0.81 0.80 0.82 0.19 0.20 0.18 4.70 4.90 4.57

IV. CONCLUSION AND FUTURE RESEARCH SCOPES

Many lncRNAs play critical roles in human diseases

and disorder pathways. An lncRNA may implicate multiple

diseases, while a disease could be a result by association of

several canonical lncRNAs. A comprehensive understanding

of the associations is necessary in diagnosis, and novel drug

discovery, and future research in this domain. However, a

very little is known about the association of lncRNAs with

diseases as compared to the exponential rate of discovery of

the lncRNAs.

In this article, we proposed the NMF-based formulation of

the lncRNA-disease association problem, and implemented

the NMF algorithms to solve the problem by constructing

models. The models have two-fold properties – they are

able to explain each of the associated lncRNA as well as

the disease in a latent feature space that can be considered

a dimensionality reduction step before further processing.

Secondly, the NMF factors can be used to retrieve bi-

clusters, that is, groups of similar lncRNAs, and groups of

similar diseases in the latent feature dimension. We found

that any NMF-based formulation that only considers the

existing knowledge of lncRNA-disease association would

be fair enough to be used in practical association predic-

tion problems. Our NMF-based solution provides rank of

lncRNAs for a query disease, as well as rank of diseases for

a query lncRNA. This property can facilitate the relevant

research community who are experimenting to identify po-

tential lncRNA-disease associations that are missing in the

existing knowledge-base.

There are some limitations exist in our NMF-based

lncRNA-disease association approach. Firstly, there are sev-

eral parameters in each of the NMF algorithms we used

in the study, and we still need a better way to select

the right parameters that can solve well. Secondly, we

only incorporated the existing lncRNA-disease association

knowledge to infer future or missing associations. But, it

would be a useful study that incorporate both the lncRNA-

lncRNA relationship, and disease-disease relationship infor-

mation into the NMF-based problem formulation, and some

other information pertaining to the lncRNA and disease

association model. Thirdly, other genomic, or transcriptomic

information about lncRNAs can be incorporated to develop a

robust association prediction system that can identify novel

potential lncRNA-associated diseases as well.
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Table II
10 PROMINENT CLUSTERS OF LNCRNAS THAT ARE RETRIEVED FROM

OUR NMF MODELS

ID Mostly associated
diseases

lincRNAs

1 gastric cancer, liver
related cancer, kidney
injury

AIR, CCAT1, DQ786243, Dreh, ENST00000513542, GNAS-AS1, HEIH, HOTTIP, HULC, IGF2-AS,
KCNQ1OT1, LALR, LDMAR, LINCMD1, lncRNA-ATB, lncRNA-MVIH, MINA, MIR7-3HG, NPTN-IT1,
np 17856, np 5318, RNA polymerase III-dependent lncRNAs, RNase MRP, VL30 LTRs

2 Esophageal squamous
cell cancer, type II di-
abetes, melanoma

1B FGF-antisense transcripts, Alu lncRNAs, CDKN2B-AS1, CDKN2B-AS10, CDKN2B-AS11, CDKN2B-AS13,
CDKN2B-AS2, CDKN2B-AS3, CDKN2B-AS5, CDKN2B-AS7, CDKN2B-AS8, D4Z4, ESCCAL-1, ESCCAL-5,
ESRG, Gm20748, HI-LNC25, HYMAI, KUCG1, LINC00032, LINC01262, NPPA-AS1, NRON, PDZRN3-AS1,
PISRT1, PTHLH, SPRY4-IT1

3 Angelman syndrome,
Prader-Willi
syndrome, Silver-
Russell syndrome

116HG, AK023948, anti-NOS2A, BDNF-AS1, C15orf2, H19, IPW, KCNQ1DN, MAP3K14, MESTIT1,
MIR100HG, MKRN3-AS1, SCAANT1, SLC7A2-IT1A/B, SNHG11, Ube3a-as, UBE3A-AS1, UBE3A-ATS

4 prostate cancer,
enterovirus infection,
autoimmune disease

AC002511.1, AP000688.29, ATXN8OS, C1QTNF9B-AS1, CBR3-AS1, CCND1 promoter-derived lncRNAs,
CDKN2B-AS9, CTBP1-AS, DAPK1, DLEU1, DLEU2, DNM3OS, GAS5, Kcna2 antisense RNA, LINC00162,
Linc00963, LOC728606, LSINCT5, MIR155HG, NAMA, PCA3, PCGEM1, PCNCR1, PRNCR1, PVT1, RP4-
620F22.3, RP5-843L14.1, SCHLAP1, SNHG5, SRA1, TCL6, TERC, ZFAT-AS1

5 Heart Failure 5730458M16Rik, AK038798, AK044955, AK049728, AK137898, AK144081, AK153778, BX118339,
DMPK, DMPK 3’UTR, ENSMUST00000022467, ENSMUST00000041159, ENSMUST00000117372,
ENSMUST00000117393, ENSMUST00000119855, ENSMUST00000120925, ENSMUST00000127230,
ENSMUST00000127429, ENSMUST00000130025, ENSMUST00000142855, ENSMUST00000143888,
ENSMUST00000160947, ENSMUST00000167632, FADS1, Fendrr, Gm12839, Gm6644, LIPCAR,
LOC102635190, Scarb2, Trpm3, uc.115-, uc.184+, UCH1LAS, Zim3

6 Hereditary
Haemorrhagic
Telangiectasia, fragile
X syndrome

B1 SINE RNA, ENSG00000135253.9, ENSG00000147753.5, ENSG00000196096.3, ENSG00000197251.3,
ENSG00000203325.3, ENSG00000206129.3, ENSG00000215231.3, ENSG00000215374.4,
ENSG00000215808.2, ENSG00000226496.1, ENSG00000229563.1, ENSG00000230133.1,
ENSG00000230544.1, ENSG00000231133.1, ENSG00000231185.2, ENSG00000232021.2,
ENSG00000232046.1, ENSG00000232956.3, ENSG00000233154.1, ENSG00000233251.3,
ENSG00000235285.1, ENSG00000237036.3, ENSG00000237548.1, ENSG00000240453.1,
ENSG00000241269.1, ENSG00000245910.3, ENSG00000248176.1, ENSG00000249364.1,
ENSG00000249772.1, ENSG00000250195.1, ENSG00000250608.1, ENSG00000254154.3,
ENSG00000255471.1, ENSG00000256218.1, ENSG00000259150.1, ENSG00000259334.1,
ENSG00000259484.1, ENSG00000259758.1, ENSG00000263753.1, ENSG00000264772.1,
ENSG00000266952.1, FMR4, FMR6, RNA-a

7 Alzheimer’s disease,
bipolar disorder,
Huntington’s disease,
schizophrenia,
depression, DiGeorge
syndrome, Intellectual
and developmental
disability, psychiatric
disease

51A, 7SL, BACE1-AS, BCYRN1, BDNF-AS, DAOA-AS1, DGCR5, DISC2, DLG2AS, FGF10-AS1, GDNFOS,
HAR1A, HAR1B, HCP5, HELLPAR, HLA-AS1, HTTAS, HTTAS v1, IFNG-AS1, LINC00271, LINC00299,
LOC389023, NEAT-1, PRINS, PSORS1C3, PTCSC, PTCSC3, REST/CoREST-regulated lncRNAs, SNHG3,
SOX2-OT, TRAF3IP2-AS1, TUG1

8 ischemia/reperfusion,
neuroblastoma, breast
cancer

4930503E24Rik, ADAMTS9-AS2, AK028007, AK139328, AK143294, AK143693, Alg2, BCAR4, BLACAT1,
CCDC26, CCND1, CDKN2B-AS12, CDKN2B-AS6, CECR3, CHL1-AS2, DLX6-AS1, DSCAM-AS1, ENS-
MUST00000151138, GHET1, HIF1A-AS1, HIF1A-AS2, lncRNA-LET, Loc554202, MEG3, MIR31HG, MYC-
NOS, ncRAN, NDM29, PAN, PANDA, PCNA-AS1, PINC, PTENpg1, Sema3g, SNHG16, SNHG4, Sox4, Srsf9,
SUMO1P3, T-UCRs, UCA1, WT1-AS, Wt1os, ZNFX1-AS1

9 misc. cancers 7SK, A130040M12Rik, AK143260, ANRIL, B2 SINE RNA, BOK-AS1, CDKN2B-AS4, CHRF, DANCR, DBE-
T, EPB41L4A-AS1, FMR5, HNF1A-AS1, KRAS1P, MIAT, MIR17HG, PANDAR, PCAT1, PTENP1, RRP1B,
RUNXOR, TC0100223, TC0101441, TC0101686, TDRG1, TERRA, TINCR, Trp53cor1, WRAP53, XIST, Yiya

10 Parkinson’s disease,
nasopharyngeal
carcinoma, cat eye
syndrome, Kawasaki
disease

ACTA2-AS1, AF086415, AFAP1-AS1, AK042766, AK056098, AK095147, AK294004, AP5M1, ASFMR1,
ATP6V1G2-DDX39B, BANCR, BC040587, BPESC1, CASC2, CCAT2, CECR9, CRNDE, HOTAIR, LINC00312,
LincRNA-p21, lnc-AL355149.1-1, lnc-C22orf32-1, lnc-ZNF674-1, LncRNA-LALR1, LSAMP-AS3, MALAT1,
PINK1-AS, PPP3CB, RMST, RP1-179N16.3, THRIL, TUSC8, U1 spliceosomal lncRNA
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