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Abstract— Our Genomic Relevance Parameterization (GReP)
model aims to explore a possible relationship between gene
expression values from breast cancer patients and mathe-
matical tumor growth modeling parameters calculated using
data from clinical and preclinical measurements. We introduce
two methods to relate genomic information and the tumor
growth measurements. One method explores the impact of
exponentiation of gene expression values, whereas the other
utilizes the correlation between co-regulated genes and the
growth parameters. As inputs to our GReP model, we used
patient tumor volume measurements and genomic information
for 74 breast cancer related genes from the I-SPY 1 TRIAL.
We performed a preliminary validation of GReP model using
experimental data from literature including MDA-MB-231 cell
line, MDA-MB-231 cell line with CXCL12 gene over-expressed,
and the MDA-MB-231 sub-cell lines 1834 and 4175. Tumor
growth curves generated by GReP model, for the initial exponen-
tial phase of tumor growth closely match the pre-clinical data
reported in the literature. These promising results show that it
may be possible to build tools combining clinical information
and genomic data to model cancerous tumor growth.
Index Terms— tumor growth models, gene expressions, microar-
ray data, breast cancer, I-SPY 1, exponential linear model.

I. INTRODUCTION

Cancer behavior can be represented by signal pathway

models [14], gene expression models [4], whole-cell mod-

els [15], and cell population models [13]. Pharmacokinetics

(PK) and pharmacodynamics (PD) models focus on the ab-

sorbtion, distribution, metabolism, excretion from drugs, and

the characteristics for the anti-cancer drugs on tumor cell

death [9], [22].

Breast cancer is now considered five molecularly distinct

neoplastic disorders [24]. Estrogen receptor ER status is a

major factor to differentiate the expression phenotype for

breast cancer [23]. Researchers describe breast cancer phe-

notypes for ER- and ER+ to be phenotypically very distinct

groups [10], [26]. In this paper, we used the gene expressions

and tumor size measurements from 79 breast cancer patients

with ER+ status from I-SPY 1 TRIAL data.

In our previous work we evaluated treatments recom-
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(NCCN) for HER2+ breast cancer [9] and ovarian cancer [28]

in pre-clinical settings. We showed that the chemotherapy

regimens recommended by the NCCN were effective in

reducing tumor volume. In this paper, we introduce a model,

called Genomic Relevance Parameterization (GReP) model,

to explore a possible relationship between gene expression

values from breast cancer patients and mathematical tumor

growth modeling parameters calculated using clinical and

preclinical measurements. We present two methods to build

GReP model, one to investigate the impact of exponentiation

of gene expression values, and the other to use correlation

between co-regulated genes and the growth parameters.

As inputs to our GReP model, we used patient data made

available by the I-SPY 1 TRIAL. It studied biomarkers with

imaging for women with Stage-3 breast cancer [8], [7].

We used patient tumor volume measurements and genomic

information for 74 breast cancer related genes for 79 patients.

Using the genomic data and MRI images from I-SPY 1

TRIAL as inputs for GReP model, we obtain a Genomic
Accordance Matrix (GAM) to generate tumor growth param-

eters for an individual patient. A quantitative analysis was

performed on the gene expression information and tumor

volume measurements for mice with tumors derived from

various cell lines reported in the literature (i.e., parental

MDA-MB-231, and subpopulations 1834, 4175, and CXCL12

over-expressed) [2], [12], [20]. With this information, our

GReP model generated tumor growth curves for these cell

lines using exponentiation and correlation methods. Tumor

growth curves generated by GReP model, for the initial

phase of tumor growth, closely matches the pre-clinical data

reported in the literature. These results encourage develop-

ment of tools to discover the relationship between clinical

information and genomic data for cancer patients.

II. CALCULATION OF TUMOR GROWTH PARAMETERS

The relationship between genetic information and cancer

has been studied in various contexts [25]. Pharmacogenomics

combines the study of PK/PD models and genetics to relate

gene expression to the metabolism, efficacy, and side effects

of drugs [27]. PK and PD study the methods that the body

absorbs drugs and their effects on the body, respectively. The

goal of pharmacogenomics is to develop accurate models and

translate them to clinical practice. We calculate tumor growth

model parameters from clinical and preclinical data for breast

and ovarian cancer patients [9], [28]. Our software tools use

bio-inspired artificial intelligence methods developed at the

earlier stages of our research [11], [17], [21].
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Typically in solid tumors, cells proliferate at an expo-

nential rate during the early stages of the disease. The

exponential-linear model [22], [16], [3] can characterize both

the initial exponential growth phase and the consequent

linear growth phase which occurs as the tumor begins to

encounter space and nutrient limitations:

dw(t)
dt

= λ0 ·w(t), w(t)≤ wth

dw(t)
dt

= λ1, w(t)> wth

w(0) = w0

(1)

where w(t) is the tumor weight at time t, and w0 is the

initial tumor weight. λ0 and λ1 are exponential and linear

tumor growth parameters, respectively. Based on the tumor

volumes obtained from MRI images, we compute the growth

parameters of λ0 and λ1 in Eq.(1) for a set of ER+ patients.

For patients without MRI information, we can use the

genetic information available in the database to approximate

the parameters. The paired difference [5] of Dp1,p2
between

two sets of genetic information from patients p1 and p2 is:

Dp1,p2
=

1

q · r
q

∑
i=1

r

∑
j=1

|g j
i,p1
−g j

i,p2
| (2)

where q is the number of selected breast cancer related genes,

r is the highest order selected for gene expression values, and

g j
i,p1

and g j
i,p2

are the jth order of the ith gene expression

values for patients p1 and p2, respectively. For the patients

without MRI, we identify the most genetically similar patient

with MRI using the criteria in Eq.(2). Once a similar patient

is identified, we calculate the tumor growth parameters of λ0

and λ1 within the range of ±20% of the original values.

III. GREP MODEL

We define a mathematical model, called Genomic Rele-
vance Parameterization (GReP), to explore a possible rela-

tionship between gene expression values from breast cancer

patients and mathematical tumor growth parameters calculat-

ed with the data from clinical and preclinical measurements.

For GReP model, λ0 and λ1 are calculated as in Sec. II.

Next, using 74 genes relevant to breast cancer [19], [20],

[26], we build a vector of gene expression values for ER+ pa-

tients. We then can calculate the coefficients of GReP model,

representing the weight of each gene on the growth. In GReP,

growth parameters are formulated as Kpx =< k1,k2, · · · ,kμ >,

which is a μ-dimensional vector for a patient px. When two

tumor growth parameters are used, k1 and k2 correspond to

λ0 and λ1, respectively. Gpx is the m dimensional vector

of the genetic information from patient x. The genetic data

vectors for n patients constitute a genetic data matrix called

G of size (m× n). In GReP, the hypothesized relationship

between tumor growth and genetic expressions is defined as:

Kpx = A ·Gpx (3)

where A =
[
ai j

]
is called a Genomic Accordance Matrix

(GAM) with the size of (μ ×m) for the number of tumor

growth parameters of μ and the genetic data vector length

of m. We developed two methods to relate tumor growth

and genetic expressions by generating the genetic data vector

Gpx . Exponentiation of genomic expressions method applies

multiple exponents to the expression value of each gene.

Correlation of genomic expressions method builds Gpx based

on the correlation between co-regulated genes.

A. Exponentiation of Genomic Expressions

Gpx can be derived using the genetic information for a

patient. We exponentiate genomic expressions with multiple

powers of each gene expression up to their rth order:

Gpx =< c, g1, g2
1, · · · , gr

1, · · · , gq, g2
q, · · · , gr

q > (4)

where q is the total number of genes and c is an offset.

Genetic information may relate to tumor proliferation by

a linear, square, or higher order function. To select the r
value for GReP model we use bio-inspired computational

techniques from our previous work [11], [17], [21].

In exponentiation of genomic expressions, the dimension

of Gpx vector is (q · r + 1) where q is the total number of

genes included in the model. Since the size of each row

in GAM (i.e., m) is equal to the size of the genetic data

vector Gpx , we have m = q · r+ 1. The exponentiated gene

data vector (Eq.(4)) can be incorporated into GReP model

(Eq.(3)) for the ith tumor growth parameter of ki as follows:

ki = c ·ai,1 +
q−1

∑
s=0

r

∑
t=1

ai,(s·r+t+1) ·gt
(s+1) (5)

where ai, j is an element of GAM corresponding to the

ith tumor growth parameter and the jth gene data vector

parameter. The coefficient gd
u is the uth gene expression value

of the patient and the dth exponent of the vector.

B. Correlation of Genomic Expressions

For correlation between pairs of genes, we compute the

Pearson correlation coefficients [18] for all possible pairs of

genes using patient data from the I-SPY 1 TRIAL database [6].

Genetic data vector Gpx is defined to identify the gene

expression impact on tumor growth parameters. We take into

account the pairwise interdependencies of genes on tumor

growth by inclusion of new parameters calculated with a

correlation function of gene arrays. We identify the correlated

gene sets with parameter assignment function ζi:

ζi =
|Si|
∏
j=1

gi, j (6)

where gi, j is the expression value of the jth gene and |Si|
is the total number of genes in subset Si where gi, j ∈ Si.

For correlated gene pairs, |Si|= 2. With the computation of

function ζv for all subsets, where v represents a subset, and

including offset parameter c, vector Gpx is:

Gpx =< c, g1, · · · , gq, ζ1, · · · , ζκ > (7)

where integer q is defined as the total number of genes, and

integer κ is the total number of correlated gene subsets. With

correlation approach, the size of the genetic data vector for
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each row of Gpx is m = q+ κ + 1. Using Eq. (3), the ith

tumor growth parameter ki can be calculated:

ki = c ·ai,1 +
q+κ

∑
s=1

{
ai,(s+1) ·gs if s≤ q
ai,(s+1) ·ζ(s−q) otherwise

(8)

where ai, j is the jth coefficient of the ith row of A matrix.

C. GAM calculation

The elements of A matrix can be calculated using ER+

I-SPY 1 TRIAL patient genomic data and their tumor growth

parameters as shown in Eq. (3). Let us define K̃i as a vector

which includes the different values for the ith tumor growth

parameter for all patients. K̃i vector has n elements

K̃i = (k̃i,p1
, k̃i,p2

, · · · , k̃i,pn) (9)

where k̃i,px is the value of the ith tumor growth parameter

for patient x. K̃i can be expressed with a set of equations:

K̃i = Ai ·
[

C
GR

]
(10)

where Ai is the ith row of A, GR is the reduced form

of matrix G with dimensions of (m− 1)× n, and C is a

single row consisting of n elements of the offset constant

c. The coefficients in the ith row of A define a row vector

as Ai = (ai,1,ai,2, · · · ,ai,m) where ai, j is the jth coefficient,

corresponding to the ith growth parameter for all patients. In

Eq. (10), the reduced form of matrix G is GR =
[
gi j

]
, where

the constant coefficient c is excluded. Each vector Ai needs

to be solved to calculate the tumor growth parameter ki for

patient x using Eqs. (5) and (8) for two methods.

IV. QUANTITATIVE RESULTS

We analyze four case studies for our GReP model using

existing data available in genetic and imaging databases. For

each case, we generate a GAM matrix for the clinical data

from 79 ER+ breast cancer patients in I-SPY 1 TRIAL. Specif-

ically, we retrieve the genetic data from GEO database [6] and

tumor growth parameters calculated from MRI information in

NBIA database [1].

The experimental data used in the case studies are taken

from several works presented in literature. Allinen et al. [2]

reports tumor growth curves for MDA-MB-231 cell line and

MDA-MB-231 cell line with CXCL12 gene over-expressed,

which are used in case studies I (Sect. IV-A) and II (Sect. IV-

B), respectively. For case studies III (Sect. IV-C) and IV

(Sect. IV-D), the tumor growth information from Minn et

al. [20] for the MDA-MB-231 sub-cell lines 1834 and 4175

are used, respectively. For genetic information, Minn et

al. [20] studied 12 differentially expressed breast cancer

related genes, whereas Ma et al. [19] provided top 50 genes

differentially expressed in tumor epithelium for breast cancer.

70 prognostic marker genes for breast cancer are available

in the study of Veer et al. [26]. Among all these genes, we

retrieved 74 of them whose data is available in I-SPY 1 TRIAL

for ER+ breast cancer patients. The selected genes for our

study are shown in Table I.

MRI information at the initial diagnosis of cancer and

immediately before treatment for each patient are available

in I-SPY 1 TRIAL database. The measurements from these

images are used to generate tumor growth parameters and

curves. With tumor growth parameters computed, we can

build GAM using the genetic information.

For case studies III and IV, growth parameters of λ0 and λ1

of the exponential-linear tumor growth model are computed

using GAM and the genetic data vector Gpx of patient x with

Eqs. (3) and (5). But for case studies I and II, we only

calculate λ0 as the time period of exponential growth since

the pre-clinical experiments were only conducted for 9 days

(i.e., not enough time for λ1). We used c = 1 and r = 2 for

the exponentiation method.

TABLE I

74 GENES SELECTED FOR OUR ANALYSIS

AKAP2 DCK GPM6B MCM6 SCD
ANGPTL4 DHRS2 GSTM3 MELK SERF1A
AP2B1 DMD HIST1H1C MMP1 SFRP1
BBC3 ECT2 HIST1H2BC MMP9 SLC2A3
C10orf116 ELF5 HIST1H2BD NAT1 SLC6A14
CCNE2 EMP1 HOXA9 NMU SOSTDC1
CEACAM6 ESM1 ID4 PHLDA1 SPARCL1
CENPA EXT1 IFI27 PRC1 TGFB3
CNTNAP2 FGF18 IFI6 PTGS2 WIF1
COL4A2 FLT1 IFIT1 RAB31 WISP1
CSF2RA FOXC1 IGFBP5 RAB6B
CX3CL1 FSCN1 KIAA1199 RARRES3
CXCL1 GABRP KIT RFC4
CXCL12 GMPS KRT15 RGS2
CYB561 GNAZ LTBP1 RRM2
CYP2B6 GPC1 MBNL2 S100P

A. Case I: MDA-MB-231 Cell Line

The experimental data for this case study is taken from

Allinen et al. [2], where they used cell-line MDA-MB-231.

During their pre-clinical study, the tumor volume is mea-

sured throughout experiment of 9 days. These measurements

(diamond shaped points in Fig. 1) illustrate that the tumor

volume grows exponentially throughout the experiment.

From this experimental data, we calculate the tumor

growth parameter of λ0 and display the corresponding tumor

growth in Fig. 1 as the square shaped points. With the gene

expression values from the pre-clinical study by Minn et

al.[20], we compute the value of λ0 parameter using Eqs. (5)

(exponentiation) and (8) (correlation). From Table II, the

tumor growth curve generated by our GReP model closely

matches with the curve from the experimental data. In Fig. 1,

we present tumor growth curves for exponentiation and

correlation methods with square and triangle shaped points,

respectively. After the first five days of the experiment, the

tumor growth from GReP model is slightly smaller than the

experimental data for both methods. This encouraging results

show that our GReP model can compute λ0 value relatively

accurately using individual patient gene expression values.

B. Case II: MDA-MB-231 - CXCL12 over-expressed

Figure 2 shows that the tumor growth from GReP model

using both methods closely approximates the experimental

data during the first days of the experiment. The values for
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TABLE II

PARAMETER λ0 FOR CASES I AND II

MDA-MB-231 cell lines

Type Experimental GReP GReP

Data (Correlation) (Exponentiation)
MDA-MB-231 0.361 0.356 0.344
CXCL12 0.490 0.418 0.407

TABLE III

PARAMETERS λ0 AND λ1 FOR CASES III AND IV

Parameter Experimental GReP GReP

(Correlation) (Exponentiation)

MDA-MB-231 1834 sub-cell line

λ0 0.079 0.101 0.087
λ1 22.180 33.188 37.934

MDA-MB-231 4175 sub-cell line

λ0 0.069 0.074 0.070
λ1 38.560 22.151 47.468

Fig. 1. Case I: Tumor growth from experimental data, and GReP model
methods for MDA-MB-231 cell line

λ0 for experimental data and for both GReP methods are in

Table II. As the experiment progresses, the differences of

the tumor volume becomes larger, starting at day 6. This

divergence stems from the small disparity between the λ0

values calculated by GReP and the λ0 value corresponding

to the experimental data as shown in Table II, resulting in

tumor volumes with amplified differences over time.

C. Case III : MDA-MB-231 Sub-Cell Line 1834

The experimental data is taken from Minn et al. [20] for

MDA-MB-231 sub-cell line 1834. During pre-clinical study

the tumor size is measured for 48 days. In Fig. 3, the tumor

grows exponentially for the first 39 days (in diamond shape),

after which it grows linearly. The values for λ0 and λ1

corresponding to the experimental data are in Table III. GReP

computes λ0 and λ1 values as given in Fig. 3 (triangle points

for exponentiation and square points for correlation).

In Fig. 3, the measured and computed tumor volumes

closely match for exponential growth. However, as the ex-

periment advances, the difference between the tumor growth

curves of experimental and the GReP model grows, similar

to the observations from Case II.

Fig. 2. Case II: Tumor growth from experimental data, and GReP model
methods for MDA-MB-231 cell line with CXCL12 gene over-expressed

Fig. 3. Case III: Tumor growth results from experimental data, and GReP

model methods for MDA-MB-231 cell line with sub-cell line 1834

D. Case IV: MDA-MB-231 Sub-Cell Line 4175

This case focuses on MDA-MB-231 sub-cell line 4175.

Figure 4 shows the tumor volume from the experimental data

and our GReP model for both methods. The initial tumor

volume grows exponentially for the first 39 days after which

becomes and stays linear until the end.We can observe in

Fig. 4 that tumor growth generated by GReP model with

both methods is close to the experimental data, especially at

the first 38 days (Table III).

V. CONCLUDING REMARKS

In this paper we present our Genomic Relevance Parame-
terization (GReP) model to compute parameters for a math-

ematical breast cancer tumor growth model. We introduce

two methods to investigate the possible relationship between

genomic information and the tumor growth measurements.

One method explores the impact of exponentiation of gene

expression values, whereas the other utilizes the correlation

between co-regulated genes and the growth parameters. As

inputs to our GReP model, we used patient tumor volume

measurements and genomic information for 74 breast cancer

related genes from the I-SPY 1 TRIAL data set.

For preliminary validation of GReP model results, we used

the data from several works presented in literature for pre-
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Fig. 4. Case IV: Tumor growth results from experimental data, and GReP

model methods for MDA-MB-231 cell line with sub-cell line 4175

clinical experiments using breast cancer cell lines. Growth

curves generated by GReP model, for the initial exponential

phase of growth, closely match the pre-clinical data from

the literature. These promising results show that it may be

possible to build tools combining clinical information and

genomic data to model cancerous tumor growth. As exper-

iments progress, small discrepancies between the computed

and experimental parameters get amplified for certain cases.

We also observe that both methods of GReP are effective

in determining tumor growth parameters. Therefore, expo-

nentiation method is preferable when impact of individual

genes on disease progression is known whereas correlation

method can be chosen when genomic information including

characterization of co-regulation between genes is available.
We plan to extend our model to drug absorbtion and effi-

cacy dependent parameters. With PK/PD parameters, useful

results for clinical support systems are expected.
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